DOI QR코드

DOI QR Code

Trends in QA/QC of Phytoplankton Data for Marine Ecosystem Monitoring

해양생태계 모니터링을 위한 식물플랑크톤 자료의 정도 관리 동향

  • YIH, WONHO (Marine Life Research and Education Center, Kunsan National University) ;
  • PARK, JONG WOO (Tidal Flat Research Institute, National Institute of Fisheries Science) ;
  • SEONG, KYEONG AH (School of Marine Applied Bioscience, Kunsan National University) ;
  • PARK, JONG-GYU (School of Marine Applied Bioscience, Kunsan National University) ;
  • YOO, YEONG DU (School of Marine Applied Bioscience, Kunsan National University) ;
  • KIM, HYUNG SEOP (School of Marine Applied Bioscience, Kunsan National University)
  • 이원호 (군산대학교 해양생물연구교육센터) ;
  • 박종우 (국립수산과학원 갯벌연구센터) ;
  • 성경아 (군산대학교 해양생명응용과학부) ;
  • 박종규 (군산대학교 해양생명응용과학부) ;
  • 유영두 (군산대학교 해양생명응용과학부) ;
  • 김형섭 (군산대학교 해양생명응용과학부)
  • Received : 2021.05.27
  • Accepted : 2021.08.20
  • Published : 2021.08.31

Abstract

Since the functional importance of marine phytoplankton was firstly advocated from early 1880s massive data on the species composition and abundance were produced by classical microscopic observation and the advanced auto-imaging technologies. Recently, pigment composition resulted from direct chemical analysis of phytoplankton samples or indirect remote sensing could be used for the group-specific quantification, which leads us to more diversified data production methods and for more improved spatiotemporal accessibilities to the target data-gathering points. In quite a few cases of many long-term marine ecosystem monitoring programs the phytoplankton species composition and abundance was included as a basic monitoring item. The phytoplankton data could be utilized as a crucial evidence for the long-term change in phytoplankton community structure and ecological functioning at the monitoring stations. Usability of the phytoplankton data sometimes is restricted by the differences in data producers throughout the whole monitoring period. Methods for sample treatments, analyses, and species identification of the phytoplankton species could be inconsistent among the different data producers and the monitoring years. In-depth study to determine the precise quantitative values of the phytoplankton species composition and abundance might be begun by Victor Hensen in late 1880s. International discussion on the quality assurance of the marine phytoplankton data began in 1969 by the SCOR Working Group 33 of ICSU. Final report of the Working group in 1974 (UNESCO Technical Papers in Marine Science 18) was later revised and published as the UNESCO Monographs on oceanographic methodology 6. The BEQUALM project, the former body of IPI (International Phytoplankton Intercomparison) for marine phytoplankton data QA/QC under ISO standard, was initiated in late 1990. The IPI is promoting international collaboration for all the participating countries to apply the QA/QC standard established from the 20 years long experience and practices. In Korea, however, such a QA/QC standard for marine phytoplankton species composition and abundance data is not well established by law, whereas that for marine chemical data from measurements and analysis has been already set up and managed. The first priority might be to establish a QA/QC standard system for species composition and abundance data of marine phytoplankton, then to be extended to other functional groups at the higher consumer level of marine food webs.

1880년대에 들어서서 해양 식물플랑크톤의 기능적 중요성이 처음 주창된 이래, 전통적인 형태 관찰법 및 진보된 형태 자동분석 기술을 기반으로 하여 다량의 식물플랑크톤 종별 정량자료가 생산되었다. 최근에는 해수시료 중의 색소를 직접 분석하거나 원격탐사 자료를 해석하여 색소특성에 따른 분류군별 정량자료를 생산함으로써, 자료생산 방법이 점점 다양해지고 자료 확보 대상 정점에 대한 시공간적 접근성도 크게 개선되고 있다. 장기적인 해양생태계 모니터링에서 식물플랑크톤의 종별 정량자료가 생산된 경우도 적지 않아, 각각의 해역에서 중장기적인 해양 식물플랑크톤의 구조와 기능의 변동에 대한 중요한 증거로 활용될 수 있다. 그러나 모니터링 기간 전체에 걸친 연대별 자료 생산자 간의 차이로 인해 이러한 자료의 활용성이 제한될 수 있는데, 시료 처리 및 분석법, 종의 확인 및 분류, 분석이 완료된 시료의 관리 등의 다양한 측면에서 연대별 생산자 간의 편차가 적지 않다. 해양 식물플랑크톤의 종별 정량자료 값을 정확하게 구하기 위한 심도있는 연구는 1880년대 후반 Victor Hensen이 시작한 것으로 평가된다. 정확도를 포함한 해양 식물플랑크톤 자료의 정도 관리에 관한 국제적인 논의는 ICSU의 SCOR Working Group 33을 중심으로 1969년에 시작되었다. 첫 결실로 UNESCO 해양과학기술보고서 제18편이 1974년 출판되었는데, 이는 UNESCO의 해양학 방법론의 전문연구서적 제6편인 Phytoplankton Manual 출판의 실마리였다. 1990년대 말에는 ISO 기준에 따른 해양 식물플랑크톤 종별 정량자료의 정도관리를 달성하여, 국제적인 자료의 상호비교 및 교정을 가능하게 하려는 수행기구인 IPI (International Phytoplankton Intercomparison)의 전신인 BEQUALM 사업이 유럽에서 본격 출범하였다. IPI는 지난 20여 년간의 경험과 실적을 바탕으로 정도관리 기준을 모든 나라에서 적용할 수 있도록 국제협력을 강화해 나가고 있다. 우리나라의 해양화학 분야 측정자료의 정도관리 체계와 내용이 잘 정립된 데 비하여, 해양생물의 종별 정량자료에 대한 본격적인 정도관리 체계는 아직 법제화 단계에 이르지 못하고 있다. 우선, 해양생태계의 기초 생산자인 식물플랑크톤의 종별 정량자료에 대한 정도관리 체계를 확립하고, 다양한 기능생물군으로 이를 확장해 나갈 필요가 있다.

Keywords

Acknowledgement

이 연구는 전북씨그랜트사업(KIMST-20170353), 한국연구재단(NRF-2019R1I1A3A01058442), (주)지오시스템리서치의 지원으로 수행되었습니다. 또한 논문을 세심하게 검토해 주신 군산대학교 권봉오 교수님께 감사드립니다.

References

  1. 민용침, 정진용, 장찬주, 이재익, 정종민, 민인기, 심재설, 김용선, 2020. 해양과학기지 시계열 관측 자료 품질관리 시스템 구축: 국제 관측자료 품질관리 방안 수온 관측 자료 시범적용과 문제점. Ocean and Polar Research, 42: 195-210.
  2. 이준수, 서영상, 고우진, 황재동, 윤석현, 한인성, 양준용, 송지영, 박명희, 이근종, 2010. 운용해양시스템을 위한 한국정선해양관측시스템 발전방향. 해양환경안전학회지, 16: 249-258.
  3. Agardh, C.A., 1824. Systema Algarum. Litteris Berlingianis, Lundae.
  4. Ahlstrom, E.H., 1948. A record of pilchard eggs and larvae collected during surveys made in 1939 to 1941. U.S. Wildl. Serv. Spec. Sci. Rep. Fish. SSRF-54., 82 pp.
  5. Alfred Wegener Institute, 2021a. Helgoland Roads Phytoplankton. Alfred Wegener Institute for Polar and Marine Research (Helmholtz centre). (https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/working-groups/long-term-observations-lto/helgoland-roads-phytoplankton.html).
  6. Alfred Wegener Institute, 2021b. Ecological long-term research at Helgoland. Alfred Wegener Institute for Polar and Marine Research (Helmholtz centre). (https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/working-groups/long-term-observations-lto.html).
  7. Allen, E.J., 1919. A contribution to the quantitative study of plankton. Journal of the Marine Biological Association of the United Kingdom, 12(1): 1-8. https://doi.org/10.1017/S0025315400059889
  8. Allen, W.E., 1941. Twenty years' statistical studies of marine plankton dinoflagellates of Southern California. The American Midland Naturalist, 26(3): 603-635. https://doi.org/10.2307/2420738
  9. Allen, W.E., 1945. Occurrences and abundances of marine plankton diatoms offshore in Southern California. Transactions of the American Microscopical Society, 64: 21-24. https://doi.org/10.2307/3223434
  10. Banse, K., 1974. A review of methods used for quantitative phytoplankton studies. Final Report of SCOR Working Group 33, pp. l-27. (Unesco Tech. Pap. mar. Sci. 18.)
  11. Anon., 1703. Two letters from a gentleman in the country, relating to Mr. Leuwenhoek's letter in transaction, No. 283. Communicated by Mr. C. Phil., Trans. Royal. Soc., 23(288): 1494-1501. https://doi.org/10.1098/rstl.1702.0065
  12. BAH., 2009. Helgoland time series from 1873 to 1893. Pangaea. (https://doi.org/10.1594/PANGAEA.711017)
  13. Bainbridge, R., 1957. The size, shape and density of marine phytoplankton concentrations. BioI. Rev., 32: 91-115. https://doi.org/10.1111/j.1469-185X.1957.tb01577.x
  14. BEQUALM/NMBAQC Scheme, 2005. Information starter pack 2004/2005., 7 pp.
  15. Boersma, M., N. Gruner, N.T. Signorelli, P.E. Montoro Gonzalez, M.A. Peck and K.H. Wiltshire, 2016. Projecting effects of climate change on marine systems: is the mean all that matters? Proc. R. Soc., B 283: 20152274. https://doi.org/10.1098/rspb.2015.2274
  16. Boersma, M., K.H. Wiltshire, S.M. Kong, W. Greve and J. Renz, 2015. Long-termchange in the copepod community in the southern German Bight. J. Sea Res,. 101: 41-50. https://doi.org/10.1016/j.seares.2014.12.004
  17. Brandt, K. 1905. On the production and conditions of production in the sea, Appendix D, 1-12. Conseil international permanent pour l'Exploration de la Mer, Rapports et Proces-Verbaux des volume III.
  18. Brohan, P., J.J. Kennedy, I. Harris, S.F.B. Tett and P.D. Jones, 2006. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111: D12106. https://doi.org/10.1029/2005JD006548
  19. Brooks, W.K., 1894. The origin of the food of marine animals. Bull. U.S. Fish. Comm. 1893, 13: 87-92.
  20. Collingwood, C., 1868. Observations on the microscopic alga which causes the discolouration of the sea in various parts of the world. Trans. Micr. Soc., n.s., 16: 85-92.
  21. De Kruif, P., 1926. Microbe Hunters. A Harvest/HBJ Book. Harcourt Brace Jovanovich, Publishers. San Diego, New York, London. 175 pp.
  22. Dobell, C., 1932. Antony van Leeuwenhoek and his 'Little Animals'. John Bale Sons & Danielsson Ltd, London, 435 pp.
  23. Dyomin, V.V., I.G. Polovtsev, A.Yu. Davydova and A.S. Olshukov, 2019. Digital holographic camera for plankton monitoring. Proc. SPIE 10944, Practical Holography XXXIII: Displays, Materials, and Applications, 109440L (1 March 2019), SPIE OPTO, 2019, San Francisco, California, United States.
  24. Dyomin V., A. Davydova, S. Morgalev, N. Kirillov, A. Olshukov, I. Polovtsev and S. Davydov, 2020. Monitoring of plankton spatial and temporal characteristics with the use of a submersible digital holographic camera. Front. Mar. Sci., 7: 653. https://doi.org/10.3389/fmars.2020.00653
  25. Ehrenberg, C.G., 1830. Organisation, systematik und geographisches Verhaltniss der infusionsthierchen. Zwei Vortrage, in der Akademie der Wissenschaften zu Berlin gehalten in den jahren 1828 und 1830. Berlin, Druckerei der Koniglichen akademie der wissenschaften. 108 pp.
  26. Falkowski, P., 2012. Ocean Science: The power of plankton. Nature, 483: S17-S20 https://doi.org/10.1038/483S17a
  27. Fogg, G.E., 1990. Our perceptions of phytoplankton: an historical sketch the first Founders' Lecture, British Phycological Journal, 25(2): 103-115. https://doi.org/10.1080/00071619000650101
  28. Fokin, S.I., 2004. A brief history of ciliate studies (late XVII - the first third of the XX century). Protistology, 3(4): 283-296.
  29. Franks, P., 2003. A century of phytoplankton research at scripps. Oceanography, 16(3): 60-66. https://doi.org/10.5670/oceanog.2003.32
  30. Fukushima, T. and H. Arai, 2015. Regime shifts observed in Lake Kasumigaura, a large shallow lake in Japan: Analysis of a 40-year limnological record. Lakes and Reservoirs: Research and Management, 20: 54-68. https://doi.org/10.1111/lre.12085
  31. Gran, H.H., 1897. Protophyta: Diatomacea, Silicoflagellata and Cilioflagellata. The Norwegian North-Atlantic Expedition 1876-1878, Botany, 1-36.
  32. Gran, H.H., 1912. Pelagic plant life. Chapter 6 (pp. 307-386) in: The Depths of the ocean, edited by Murray J. and J. Hjort, MacMillan, London (reprinted Cramer J., Weinheim, 1965).
  33. Hallegraeff, G.M., A.D. Anderson and A.D. Cembella, 1995. Manual on harmful marine microalgae. IOC Manuals and Guides 33, UNESCO, Paris, 551 pp.
  34. Hallegraeff, G.M., D.M. Anderson and A.D. Cembella, 2004. Manual on harmful marine microalgae. Monographs on oceanographic methodology 11, UNESCO, Paris, 793 pp.
  35. Hawkesworth, J., 1773a. An account of the voyages undertaken by the order of His present Majesty for making discoveries in the Southern hemisphere, and successively performed by Commodore Byron, Captain Wallis, Captain Carteret, and Captain Cook, in the Dolphin, the Swallow, and the Endeavour: Drawn up from the journals which were kept by the several commanders, and from the papers of Joseph Banks, esq. by John Hawkesworth in three volumes. Volume I. (410 pp.), London.
  36. Hawkesworth, J., 1773b. An account of the voyages undertaken by the order of His present Majesty for making discoveries in the Southern hemisphere, and successively performed by Commodore Byron, Captain Wallis, Captain Carteret, and Captain Cook, in the Dolphin, the Swallow, and the Endeavour: Drawn up from the journals which were kept by the several commanders, and from the papers of Joseph Banks, esq. by John Hawkesworth Hawkesworth in three volumes. Volume III (pp. 411-799), London.
  37. HELCOM COMBINE, 2017. Annex C-6: Guidelines concerning phytoplankton species composition, abundance and biomass. In: PART C programme for monitoring of eutrophication and its effects, manual for marine monitoring in the COMBINE programme of HELCOM. 361 pp. (https://helcom.fi/media/publications/Manual-for-Marine-Monitoring-in-the-COMBINE-Programme-of-HELCOM.pdf)
  38. Hensen, V., 1887. Ueber die Bestimmung des Planktons oder des im Meere treibenden Materials an Pflanzen und Thieren. Funfter Bericht der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel fur die Jahre 1882-1886, V. Bericht Jahrgang XII-XVI, 108 pp.
  39. Hensen, V., 1892. Entwicklung des Reiseplans. In: Reisebeschreibung, Edited by Otto Krummel, der Plankton-Expedition, pp. 1-17., Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, Band 1.A.
  40. Hensen, V., 1895. Methodik der Untersuchungen. Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, Band 1.B., pp. 1-200, 12 pls.
  41. Hensen, V., 1911. Das Leben im Ozean nach Zahlungen seiner Bewohner. ubersicht und Resultate der quantitativen Untersuchungen. Ergebnisse. der Plankton-Expedition der Humboldt-Stiftung. V.O., Kiel and Leipzig, 406 pp.
  42. Hewes, C.D. and W.H. Thomas, 2002. W. E. Allen's phytoplankton species time series and environmental factors from the North American Pacific coast, with related illustrations from Cupp and Kofoid. UC San Diego: Libray - Scripps digital Collection. Scripps Institution of Oceanography Technical Report.
  43. Hewitt, R.P., 1988. Historical review of the oceanographic approach to fishery research. CalCOFI Reports, 29: 27-41.
  44. Hooker, J.D., 1844. The botany of the Antarctic voyage of HM Discovery Ships Erebus and Terror in the years 1839-1843. Reeve Brothers, London. Reprint 1963: Weinheim, J. Cramer.
  45. ICES Data Portal, 2021. Data inventory by species (Dinophysis, 1870-2021), ICES/CIEM Homepage. (https://ecosystemdata.ices.dk/inventory/index.aspx?LatN=54.9199&LatS=53.9970&LonE=8.3545&LonW=7.4097&Sdate=10/04/1870&Filter=dinophysis&Edate=10/04/2021&Area=Species&Species=0)
  46. ICES. 1994. Proces-Verbal de la Reunion 1993 (ICES annual report 1993). International Council for the Exploration of the Sea, Dublin. 306 pp.
  47. ICES. 2006. Report of the ICES/IOC workshop on new and classic techniques for the determination of numerical abundance and biovolume of HAB-species - Evaluation of the cost, time-efficiency and intercalibration methods (WKNCT), 22-27 August 2005, Kristineberg, Sweden. ICES CM 2005/C:10. 30 pp.
  48. ICSU (International Council of Scientific Unions), 1969a. Proceedings of the Scientific Committee on Oceanic Research. 5(1): 1-34.
  49. ICSU, 1969b. Proceedings of the Scientific Committee on Oceanic Research, 5(2): 35-60.
  50. IGMETS, 2021. IOC-UNESCO international group for marine ecological time series: Analysis and synthesis of global marine ecological changes as seen through biogeochemical and plankton time series. (https://igmets.net/)
  51. Karlusich, J.J.P., Ibarbalz, F.M., and C. Bowler, 2020. Exploration of marine phytoplankton: From their historical appreciation to the omics era. Journal of Plankton Research, 42: 595-612.
  52. Karlson, B., C. Cusack and E. Bresnan, 2010. Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO (IOC Manuals and Guides, No. 55), Paris, 110 pp.
  53. Kase, L., A.C. Kraberg, K. Metfies, S. Neuhaus, P.A.A. Sprong, B.M. Fuchs, M. Boersma and K.H. Wiltshire, 2020. Rapid succession drives spring community dynamics of small protists at Helgoland Roads, North Sea. J. Plankton Res., 42: 305-319. https://doi.org/10.1093/plankt/fbaa017
  54. Kase, L., K. Metfies, S. Neuhaus, M. Boersma, K.H. Wiltshire and A.C. Kraberg, 2021. Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them? PLoS ONE, 16(1): e0244817. https://doi.org/10.1371/journal.pone.0244817
  55. Kraberg, A., N. Rodriguez and C. Salewski, 2015. Historical phytoplankton data from Helgoland Roads: can they be linked to modern time series data? J. Sea Res., 101: 51-58. https://doi.org/10.1016/j.seares.2015.03.004
  56. Kraberg, A., U. Kieb, S. Peters and K.H. Wiltshire, 2019. An updated phytoplankton check-list for the Helgoland Roads time series station with eleven new records of diatoms and dinoflagellates. Helgol. Mar. Res., 73: 9. https://doi.org/10.1186/s10152-019-0528-8
  57. Kumar, S., P. Baweja and D. Sahoo, 2015. Diatoms: Yellow or golden brown algae. In: The algae world, edited by Sahoo D. and J. Seckbach, pp. 235-258.
  58. Leewenhoeck A. 1674. More observations from Mr. Leewenhook, in a letter of Sept. 7. 1674 sent to the publisher. Phil. Trans., 9(108): 178-182. https://doi.org/10.1098/rstl.1674.0057
  59. Leewenhoeck, A.V., 1677. Observation, communicated to the publisher by Mr. Antony van Leewenhoeck, in a dutch letter of the 9th Octob. 1676. here English'd: concerning little animals by him observed in rain-well-sea- and snow water; as also in water wherein pepper had lain infused. Phil. Trans., 12(133): 821-831. https://doi.org/10.1098/rstl.1677.0003
  60. Leeuwenhoek, A.V., 1703. Part of a letter from Anthony von Leeuwenhoek, Concerning green weeds growing in water, and some animicula found about them. Philos. Trans., 23(283): 1304-1311 (reprinted in Leeuwenhoek, A. (1996) Letter nr. 239 of 25 December 1702, In: The Collected Letters of Antoni Van Leeuwenhoek, edited by Palm L.C., vol. 14. Swets & Zeitlinger, Lisse, pp. 158-179). https://doi.org/10.1098/rstl.1702.0042
  61. Linnaeus, C., 1767. Systema naturae, per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Tom. I. Pars II. Editio duodecima, reformata. Holmiae. Typis Joannis Thomae nob. de Trattnern, Vindobonae, pp. 533-1327.
  62. Lohmann, H., 1903. Neue Untersuchungen uber den Reichtum des Meeres an Plankton und uber die Brauchbarkeit der verschiedenen Fangmethoden. Wissenschaftliche Meeresuntersuchungen, Abteilung Kiel, Neue Folge, 7: 1-88.
  63. Lohmann, H., 1908. Untersuchungen zur Feststellung des vollstandigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchungen, Abteilung Kiel, Neue Folge, 10: 129-370.
  64. Lohmann, H., 1911. uber das Nannoplankton und die Zentrifugierung kleinster Wasserproben zur Gewinnung desselben in lebendem Zustande. Int. Revue ges. Hydrobiol. Hydrogr., 4: 1-39. https://doi.org/10.1002/iroh.19110040102
  65. Lombard, F., E. Boss, A.M. Waite, M. Vogt, J. Uitz, L. Stemmann, H.M. Sosik, J. Schulz, J.-B. Romagnan, M. Picheral, J. Pearlman, M.D. Ohman, B. Niehoff, K.O. Moller, P. Miloslavich, A. Lara-Lpez, R. Kudela, R.M. Lopes, R. Kiko, L. Karp-Boss, J.S. Jaffe, M.H. Iversen, J.-O. Irisson, L. Fennel, H. Hauss, L. Guidi, G. Gorsky, S.L.C. Giering, P. Gaube, S. Gallager, G. Dubelaar, R.K. Cowen, F. Carlotti, C. Briseno-Avena, L. Berline, K. Benoit-Bird, N. Bax, S. Batten, S.D. Ayata, L.F. Artigas and W. Appeltans, 2019. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci., 6: 196. https://doi.org/10.3389/fmars.2019.00196
  66. Lund, J.W.G., C. Kipling and E.D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11(2): 143-170. https://doi.org/10.1007/BF00007865
  67. Matthaus, W., 2010. Germany and the investigation of the Baltic Sea hydrography during the 19th and early 20th century. Meereswissenschaftliche Berichte Marine Science Reports, No. 83, Warnemunde, 105 pp.
  68. Metfies, K., J. Hessel, R. Klenk, W. Petersen, K.H. Wiltshire and A. Kraberg, 2020. Uncovering the intricacies of microbial community dynamics at Helgoland Roads at the end of a spring bloom using automated sampling and 18S metabarcoding. PLoS ONE 15(6): e0233921. https://doi.org/10.1371/journal.pone.0233921
  69. Meyer, H.A., K. Mobius, G. Karsten and V. Hensen, 1873. Die Expedition zur physikalischchemischen und biologischen Untersuchung der Ostsee im Sommer 1871 auf S. M. Avisodampfer Pommerania. Jahresber. Comm. Wiss. Unters. Dt. Meere Kiel fur das Jahr 1871, Berlin, Jg., 1, pp. 178.
  70. Mills, E.L., 2012. Biological oceanography: An early history, 1870-1960. University of Toronto Press, Ontario, 416 pp.
  71. Mirtl, M., E.T. Borer, I. Djukic, M. Forsius, H. Haubold, W. Hugo, J. Jourdan, D. Lindenmayer, W.H. McDowell, H. Muraoka, D.E. Orenstein, J.C. Pauw, J. Peterseil, H. Shibata, C. Wohner, X. Yu and P. Haase, 2018. Genesis, goals and achievements of long-term ecological research at the global scale: A critical review of ILTER and future directions. Sci. Total Environ., 626: 1439-1462. https://doi.org/10.1016/j.scitotenv.2017.12.001
  72. Muller, O.F., 1776. Zoologiae Danicae Prodromus: seu animalium Daniae et Norvegiae indigenarum; characteres, nomina, et synonyma imprimis popularium. pp. [i]-xxxii, [1]-274. Havniae [Copenhagen]: Typis Hallageriis.
  73. Muller, O.F. 1786. Animalcula infusoria fluvia tilia et marina. que detexit, systematice descripsit et ad vivum delineari curavit Otho Fridericus Muller. pp. [i]-lx, [1]-367. Havniae [Copenhagen]: Typis N. Molleri, 1786.
  74. National Institute for Environmental Studies, 2021. Phytoplankton (Table 9 and 10). Lake Kasumigaura Database, NIES, Japan. (https://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/contents/datalist.html)
  75. Nishijima, W., Umehara A., Yamamoto K., Asaoka S., Fujii N., Otani S., Wang F., Okuda T. and S. Nakai, 2021. Temporal distribution of primary and secondary production estimated from water quality data in the Seto Inland Sea, Japan. Ecological Indicators, 124: 107405 . https://doi.org/10.1016/j.ecolind.2021.107405
  76. Nishikawa, T., Y. Hori, S. Nagai, K. Miyahara, Y. Nakamura, K. Harada, M. Tanda, T. Manabe and K. Tada, 2010. Nutrient and phytoplankton dynamics in Harima-Nada, eastern Seto Inland Sea, Japan During a 35 year period from 1973 to 2007. Estuaries and Coasts, 33(2): 417-427. https://doi.org/10.1007/s12237-009-9198-0
  77. NMBAQC Coordinating Committee, 1995. National marine biological analytical quality control (AQC) scheme. Final Report, April 1994- March 1995. UnicoMarine LTD, 76 pp.
  78. NMBAQC Coordinating Committee, 2007. BEQUALM-NMBAQC Annual Report, Year 12 - 2005/2006. BEQUALM-NMBAQC Scheme, 130 pp.
  79. NMBAQC Coordinating Committee, 2017. NE Atlantic marine biological analytical quality control scheme. Annual Report 2015/2016, NMBAQC Scheme, 27 pp.
  80. NMBAQC Coordinating Committee, 2018. NE Atlantic marine biological analytical quality control scheme. Annual Report 2017/2018, NMBAQC Scheme, 34 pp.
  81. O'Brien, T.D., K. William, W. Li and X.A.G. Moran, 2012. ICES phytoplankton and microbial plankton status report 2009/2010. ICES Cooperative Research Report No. 313, 196 pp.
  82. O'Brien, T.D., P.H. Wiebe and S. Hay, 2011. ICES zooplankton status report 2008/2009. ICES Cooperative Research Report No. 307, 152 pp.
  83. O'Brien, T.D., L. Lorenzoni, K. Isensee and L. Valdes, 2017. What are marine ecological time series telling us about the ocean? A status report. IOC-UNESCO, IOC Technical Series, No. 129, 297 pp.
  84. Ohara, S., R. Yano, E. Hagiwara, H. Yoneyama and K. Koike, 2020. Environmental and seasonal dynamics of altering the primary productivity in Bingo-Nada (Bingo Sound) of the Seto Inland Sea. Plankton and Benthos Research, 15: 78-96. https://doi.org/10.3800/pbr.15.78
  85. Ohman, M.D., R.E. Davis, J.T. Sherman, K.R. Grindley, B.M. Whitmore, C.F. Nickels and J.S. Ellen, 2019. Zooglider: An autonomous vehicle for optical and acoustic sensing of zooplankton. Limnol. Oceanogr.: Methods, 17: 69-86. https://doi.org/10.1002/lom3.10301
  86. Ohman, M.D., and E.L. Venrick, 2003. CalCOFI in a changing ocean. Oceanography, 16(3): 76-85. https://doi.org/10.5670/oceanog.2003.34
  87. PANGAEA, 2021a. Hydrochemistry and phytoplankton abundance at time series station Helgoland Roads, North Sea, in 1962-2015. PANGAEA, Data Publisher for Earth & Environmental Science (https://www.pangaea.de/?q=Hydrochemistry+and+phytoplankton+abundance+at+time+series+station+Helgoland+Roads%2C+North+Sea).
  88. PANGAEA, 2021b. Total abundance of phytoplankton at time series station Helgoland Roads, North Sea, in 2003-2015. PANGAEA, Data Publisher for Earth & Environmental Science (https://www.pangaea.de/?q=Total+abundance+of+phytoplankton+at+time+series+station+Helgoland+Roads%2C+North+Sea).
  89. Parkinson, S., 1773. A Journal of a Voyage to the South Seas, in His Majesty's ship, the Endeavour. Faithfully transcribed from the papers of the late Sydney Parkinson, draughtsman to Joseph Banks, Esq. on his late expedition with Dr. Solander around the world. London.
  90. Raabe, T. and K.H. Wiltshire, 2009. Quality control and analyses of the long-term nutrient data from Helgoland Roads, North Sea. J. Sea Res., 61: 3-16. https://doi.org/10.1016/j.seares.2008.07.004
  91. Rayner, N.A., P. Brohan, D.E. Parker, C.K. Folland, J.J. Kennedy, M. Vanicek, T.J. Ansell and S.F.B. Tett, 2006. Improved analyses of changes and uncertainties in sea-surface temperature measured in-situ since the mid-nineteenth century. J. Clim., 19: 446-469. https://doi.org/10.1175/JCLI3637.1
  92. Revelle, R., 1957. International cooperation in marine sciences. Science, 126: 1319-1323. https://doi.org/10.1126/science.126.3287.1319
  93. Ross, J.C., 1847a. A voyage of discovery and research in the Southern and Antarctic Regions, during the years 1839-43 with plates, maps, and woodcuts. In two volumes, Volume 1. London, 366 pp.
  94. Ross, J.C., 1847b. A Voyage of Discovery and Research in the Southern and Antarctic Regions, during the Years 1839-43 with plates, maps, and woodcuts. In two volumes, Volume 2, London, 447 pp.
  95. Salas, R.G., 2021. Announcement: The international phytoplankton intercalibration. p. 22, In: Harmful Algae News (IOC-Unesco) 67 (April 2021), 25 pp.
  96. Scofield, E.C., 1932. Early life history of the California sardine (Sardina caerulea), with special reference to distribution of eggs and larvae. Calif. Div. Fish Game Fish Bull., 41: 1-48.
  97. Sournia, A., 1978. Phytoplankton manual- Monographs on oceanographic methodology, 6A. UNESCO, Paris, 337 pp.
  98. Steemann, N.E., 1933. uber quantitative untersuchung von marinem plankton mil utermohls Umgekehrten Mikroskop. J. Cons. Int. Expl. Mer, 8: 201-210. https://doi.org/10.1093/icesjms/8.2.201
  99. Takamura, N. and M. Nakagawa, 2012. Phytoplankton species abundance in Lake Kasumigaura (Japan) monitored monthly or biweekly since 1978. Ecol. Res., 27: 837. https://doi.org/10.1007/s11284-012-0971-3
  100. Taylor, F.J.R., 1980. Phytoplankton ecology before 1900: Supplementary notes to the "Depths of the Ocean". In: Oceanography: The past, edited by Sears M. and D. Merriman, Springer, New York, pp. 509-521.
  101. Taylor, W.D., J.L. Wee and R.G. Wetzel, 1986. A modification of the utermohl sedimentation technique for improved identification and cell enumeration of diatoms and silica-scaled chrysophyceae. Transactions of the American Microscopical Society, 105: 68-72. https://doi.org/10.2307/3226552
  102. UNESCO, 1995. Reports of governing and major subsidiary bodies- IOC-FAO Intergovernmental Panel on Harmful Algal Blooms. Third Session. Paris, 24 pp.
  103. Utermohl, H., 1927. Untersuchungen ueber den Gesamtplanktongehalt des Kanarenstromes. Arch. Hydrobiol. Plankt., 18: 464-525.
  104. Utermohl, H., 1931. Neue Wege in der quantitativen Erfassung des Plankton (Mit besonderer Berucksichtigung des Ultraplanktons). Internationale Vereinigung fur theoretische und angewandte Limnologie: Verhandlungen, 5(2): 567-596.
  105. Venrick, E.L., 1998. Spring in the California Current: the distribution of phytoplankton species, April 1993 and April 1995. Marine Ecology Progress Series, 167: 73-88. https://doi.org/10.3354/meps167073
  106. Venrick, E.L., 2015. Phytoplankton species in the California Current System off Southern California: The spatial dimensions. Calif. Coop. Ocean. Fish. Investig. Rep., 56: 168-184.
  107. Venrick, E.L., 2021. Temporal and spatial changes of the abundance and species composition of phytoplankton in the California Current from samples collected aboard CalCOFI cruises from summer 1996 through 2018. Phytoplankton species composition, California Current (CalCOFI Cruises). California Current Ecosystem LTER. (https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets/254).
  108. Wasmund, N. 2017. The diatom/dinoflagellate index as an indicator of ecosystem changes in the Baltic Sea- 2. Historical data for use in determination of good environmental status. Front. Mar. Sci., 4: 153. https://doi.org/10.3389/fmars.2017.00153
  109. Wasmund, N., J. Gobel and B.V. Bodungen, 2008. 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). J. Mar. Syst., 73: 300-322. https://doi.org/10.1016/j.jmarsys.2006.09.009
  110. Wasmund, N., J. Kownacka, J. Gobel, A. Jaanus, M. Johansen, I. Jurgensone, S. Lehtinen and M. Powilleit, 2017. The diatom/dinoflagellate index as an indicator of ecosystem changes in the Baltic Sea- 1. Principle and handling instruction. Front. Marine Sci., 4: 22.
  111. Wiebe, P.H., R. Harris, A. Gislason, P. Margonski, H.R. Skjoldal, M. Benfield, S. Hay, T. O'Brien and L. Valdes, 2016. The ICES working group on zooplankton ecology: Accomplishments of the first 25 years. Progress in Oceanography, 141: 179-201. https://doi.org/10.1016/j.pocean.2015.12.009
  112. WILDCOMS. 2014. Summer Spotlight on the Policy relevance of the WILDCOMS monitoring schemes. Newsletter 11, 1-3. Wildlife Disease & Contaminant Monitoring and Surveillance network.
  113. Williams, D.M. and Kociolek J.P., 2011. An overview of diatom classification with some prospects for the future. In: The diatoms world series: Cellular origin, life in extreme habitats and astrobiology, edited by Seckbach, J. and J.P. Kociolek, Springer, vol. 19, pp. 47-91.
  114. Williams, D.M., 2007. Classification and diatom systematics: the past, the present and the future. In: Unravelling the algae: the past, present, and future of algal systematics. edited by Brodie, J. and J. Lewi, CRC Press, Boca Raton., The Systematics Association Special Volume Series 75, pp. 57-91.
  115. Wiltshire, K.H. and C.D. Durselen, 2004. Revision and quality analyses of the Helgoland Reede long-term phytoplankton data archive. Helgol. Mar. Res., 58: 252-268. https://doi.org/10.1007/s10152-004-0192-4
  116. Wiltshire, K.H., M. Boersma, K. Carstens, A.C. Kraberg, S. Peters and M. Scharfe, 2015. Control of phytoplankton in a shelf sea: determination of the main drivers based on the Helgoland Roads Time Series. J. Sea Res., 105: 42-52. https://doi.org/10.1016/j.seares.2015.06.022
  117. Wiltshire, K.H. and B.F.J. Manly, 2004. The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol. Mar. Res., 58: 269-273. https://doi.org/10.1007/s10152-004-0196-0
  118. Wiltshire, K.H., A. Kraberg, I. Bartsch, M. Boersma, H.-D. Franke, J. Freund, Christina, C. Gebuhr, G. Gerdts, K. Stockmann and A. Wichels, 2010. Helgoland Roads, North Sea: 45 years of change. Estuaries and Coasts, 33: 295-310. https://doi.org/10.1007/s12237-009-9228-y
  119. Wolff, T., 2010. The birth and first years of the scientific committee on oceanic research (SCOR). SCOR, Newark, Delaware, USA, pp. 95.
  120. Zingone, A., D. D'Aleolio, M.G. Mazzocchi, M. Montresor, D. Sarno and LTER-MC team, 2019. Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site. Nature Conservation, 34: 273-310. https://doi.org/10.3897/natureconservation.34.30789