DOI QR코드

DOI QR Code

Detection and Analysis of Discharge Pulses by Failure Mechanisms of the Separator inside Lithium-Ion Batteries

리튬이온 배터리의 분리막 손상 요인별 방전펄스의 검출과 분석

  • Lim, Seung-Hyun (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Lee, Gyeong-Yeol (Quality Assurance Department, Korea Hydro & Nuclear Power Co. Ltd.) ;
  • Kim, Nam-Hoon (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kim, Dong-Eon (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kil, Gyung-Suk (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
  • 임승현 (한국해양대학교 전기전자공학과) ;
  • 이경렬 (한국수력원자력주식회사 품질보증처) ;
  • 김남훈 (한국해양대학교 전기전자공학과) ;
  • 김동언 (한국해양대학교 전기전자공학과) ;
  • 길경석 (한국해양대학교 전기전자공학과)
  • Received : 2021.06.02
  • Accepted : 2021.06.28
  • Published : 2021.09.01

Abstract

Lithium-ion batteries (LIBs) have become a main energy storage device in various applications, such as portable appliances, renewable energy facilities, and electric vehicles. However, the poor thermal stability of LIBs may cause explosion or fire. The thermal runaway is the result of a failure of the separator inside LIB. Damages like tearing, piercing, and collapsing of the separator were simulated in a mechanical, an electrical, and a thermal way, and small discharge pulses of a few mV were detected at the time of separator damages. From the experimental results, this paper provided a method that can identify the separator failure before thermal runaway in the aspect of a potential explosion and fire prevention measures.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부(MOTIE) 및 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구입니다(No.20010965).

References

  1. Korea Midland Power Co., Ltd., https://www.komipo.co.kr (2020).
  2. Korea Electric Vehicle Association, https://www.keva.or.kr (2021).
  3. Korea Institute of Energy Reserch, https://energium.kier.re.kr/ (2020).
  4. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Energy Storage Mater., 10, 246 (2019). [DOI: https://doi.org/10.1016/j.ensm.2017.05.013]
  5. Q. Wang, B. Mao, S. I. Stoliarov, and J. Sun, Prog. Energy Combust. Sci., 73, 95 (2019). [DOI: https://doi.org/10.1016/j.pecs.2019.03.002]
  6. Ministry of Trade, Industry and Energy, http://www.motie.go.kr/ (2019).
  7. SNE Research, http://www.sneresearch.com/ (2021).
  8. Korean Broadcasting System, https://news.kbs.co.kr/ (2021).
  9. Ministry of Land, Infrastructure and Transport, http://www.molit.go.kr/ (2020).
  10. M. Z. Kong, V. H. Nguyen, and H. B. Gu, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 298 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.5.298]
  11. H. K. Lee and G. T. Kim, Inst. Korean Electr. Electron. Eng., 23, 580 (2019). [DOI: https://doi.org/10.7471/IKEEE.2019.18.3.298]
  12. S. H. Lee and M. K. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 18, 298 (2014). [DOI: https://doi.org/10.7471/IKEEE.2014.18.3.298]
  13. J. Lamb, C. J. Orendorff, L.A.M. Steele, and S. W. Spangler, J. Power Sources, 283, 517 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2014.10.081]
  14. J. Gao, S. Q. Shi, and H. Li, Chin. Phys. B, 25, 018210 (2016). [DOI: https://doi.org/10.1088/1674-1056/25/1/018210]
  15. IEC 62133-2:2017, Secondary Cells and Batteries Containing Alkaline or Other Non-acid Electrolytes - Safety Requirements for Portable Sealed Secondary Lithium Cells, and for Batteries Made from Them, for Use in Portable Applications - Part 2: Lithium Systems (2017).