References
- Aggarwal, C. C. (2016). Outlier analysis (2nd ed.). Springer. https://doi.org/10.1007/978-1-4614-6396-2
- Akinboade, O. A., Kinfack, E. C., & Mokwena, M. P. (2012). An analysis of citizen satisfaction with public service delivery in the Sedibeng district municipality of South Africa. International Journal of Social Economics, 39(3), 182-199. https://doi.org/10.1108/03068291211199350
- Aliyah Salsabila, N., Ardhito Winatmoko, Y., Akbar Septiandri, A., & Jamal, A. (2019). Colloquial Indonesian Lexicon. Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, 226-229. https://doi.org/10.1109/IALP.2018.8629151
- Altammami, S. H., & Rana, O. F. (2017). Topic identification system to filter Twitter feeds. Proceedings - 2016 3rd International Conference on Soft Computing and Machine Intelligence, ISCMI 2016, 206-213. https://doi.org/10.1109/ISCMI.2016.14
- Anaman, K. A., Quaye, R., & Amankwah, E. (2017). Evaluation of Public Weather Services by Users in the Formal Services Sector in Accra, Ghana. Modern Economy, 08(07), 921-945. https://doi.org/10.4236/me.2017.87065
- Aziz, M. N., Firmanto, A., Miftah Fajrin, A., & Hari Ginardi, R. V. (2018). Sentiment analysis and topic modelling for identification of government service satisfaction. Proceedings - 2018 5th International Conference on Information Technology, Computer and Electrical Engineering, ICITACEE 2018, 125-130. https://doi.org/10.1109/ICITACEE.2018.8576974
- Bai, C., & Ye, C. (2005). Construct a public service quality evaluation model: Evidence from Chinese public service industry. 2005 International Conference on Services Systems and Services Management, Proceedings of ICSSSM'05, 1, 508-513. https://doi.org/10.1109/ICSSSM.2005.1499525
- Barbera, P., & Rivero, G. (2015). Understanding the political representativeness of Twitter users. Social Science Computer Review, 33(6), 712-729. https://doi.org/10.1177/0894439314558836
- Barbu, A., & Isaic-Maniu, A. (2011). Data collection in Romanian market research: A comparison between prices of PAPI, CATI and CAWI. Management & Marketing, 6(3), 349-364.
- Bencke, L., Cechinel, C., & Munoz, R. (2020). Automated classification of social network messages into smart cities dimensions. Future Generation Computer Systems, 109, 218-237. https://doi.org/10.1016/j.future.2020.03.057
- Benmansour, N. A. (2019). Citizens and expatriates satisfaction with public services in Qatar - evidence from a survey. International Journal of Social Economics, 46(3), 326-337. https://doi.org/10.1108/IJSE-03-2018-0118
- Bradshaw, S., & Howard, P. N. (2019). The global disinformation disorder: 2019 global inventory of organised social media manipulation. University of Oxford. https://comprop.oii.ox.ac.uk/wpcontent/uploads/sites/93/2019/09/CyberTroop-Report19.pdf
- Burnap, P., Colombo, G., Amery, R., Hodorog, A., & Scourfield, J. (2017). Multi-class machine classification of suicide-related communication on Twitter. Online Social Networks and Media, 2, 32-44. https://doi.org/10.1016/j.osnem.2017.08.001
- Chamby-Diaz, J. C., & Bazzan, A. L. C. (2019). Identifying traffic event types from Twitter by multi-label classification. Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, 806-811. https://doi.org/10.1109/BRACIS.2019.00144
- Chang, J., Rosenn, I., Backstrom, L., & Marlow, C. (2010). EPluribus: Ethnicity on social networks. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, 18-25.
- Chodzaza, G. E., & Gombachika, H. S. H. (2013). Service quality, customer satisfaction and loyalty among industrial customers of a public electricity utility in Malawi. International Journal of Energy Sector Management, 7(2), 269-282. https://doi.org/10.1108/IJESM-02-2013-0003
- Citrin, J., & Green, D. P. (1986). Presidential leadership and the resurgence of trust in government. British Journal of Political Science, 16(4), 431-453. https://doi.org/10.1017/S0007123400004518
- Corallo, A., Fortunato, L., Matera, M., Alessi, M., Camillo , A., Chetta, V., Giangreco, E., & Storelli, D. (2015). Sentiment analysis for government: An optimized approach. In P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition. MLDM 2015. Lecture notes in computer science, 9166, pp. 98-112. Springer International Publishing. https://doi.org/10.1007/978-3-319-21024-7_7
- Cui, W. (2009). A scientific inspection of public service of new countryside in China. Proceedings of the 2009 6th International Conference on Service Systems and Service Management, ICSSSM '09, 363-367. https://doi.org/10.1109/ICSSSM.2009.5174909
- Davis, D. H. (2017). Is Twitter a generalizable public sphere? A comparison of 2016 presidential campaign issue importance among general and Twitter publics. Proceedings of the 8th International Conference on Social Media & Society, 1-5. https://doi.org/10.1145/3097286.3097317
- Denhardt, R. B., & Denhardt, J. V. (2000). The new public service: Serving rather than steering. Public Administration Review, 60(6), 549-559. https://doi.org/10.1111/0033-3352.00117
- Ganu, G., Elhadad, N., & Marian, A. (2009). Beyond the stars: Improving rating predictions using review text content. WebDB, 9, 1-6.
- Ganu, G., Kakodkar, Y., & Marian, A. (2013). Improving the quality of predictions using textual information in online user reviews. Information Systems, 38(1), 1-15. https://doi.org/10.1016/j.is.2012.03.001
- Georgiadou, E., Angelopoulos, S., & Drake, H. (2020). Big data analytics and international negotiations: Sentiment analysis of Brexit negotiating outcomes. International Journal of Information Management, 51(November), 102048. https://doi.org/10.1016/j.ijinfomgt.2019.102048
- Gojali, S., & Khodra, M. L. (2016). Aspect based sentiment analysis for review rating prediction. 4th IGNITE Conference and 2016 International Conference on Advanced Informatics: Concepts, Theory and Application, ICAICTA 2016, 1-6. https://doi.org/10.1109/ICAICTA.2016.7803110
- Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann Publishers.
- Heiervang, E., & Goodman, R. (2011). Advantages and limitations of web-based surveys: Evidence from a child mental health survey. Social Psychiatry and Psychiatric Epidemiology, 46, 69-76. https://doi.org/10.1007/s00127-009-0171-9
- Hu, X., & Liu, H. (2012). Text analytics in social media. In C. C. Aggarwal & C. Zhai (Eds.), Mining Text Data, 53(9), 385-414. Springer US. https://doi.org/10.1007/978-1-4614-3223-4_12
- Hutchinson, A. (2020). Who's complaining, and what are the most common reasons for calling out businesses on social? [Infographic]. Retrieved August 7, 2021 from https://www.socialmediatoday.com/news/whos-complaining-and-what-arethe-most-common-reasons-for-calling-out-bus/570076/
- Karimi, F., Wagner, C., Lemmerich, F., Jadidi, M., & Strohmaier, M. (2016). Inferring gender from names on the web: A comparative evaluation of gender detection methods. Proceedings of the 25th International Conference Companion on World Wide Web, 53-54. https://doi.org/http://dx.doi.org/10.1145/2872518.2889385
- Kaur, W., Balakrishnan, V., Rana, O., & Sinniah, A. (2019). Liking, sharing, commenting and reacting on Facebook: User behaviors' impact on sentiment intensity. Telematics and Informatics, 39, 25-36. https://doi.org/10.1016/j.tele.2018.12.005
- Kaura, V. (2013). Antecedents of customer satisfaction: A study of Indian public and private sector banks. International Journal of Bank Marketing, 31(3), 167-186. https://doi.org/10.1108/02652321311315285
- Koto, F., & Rahmaningtyas, G. Y. (2017). Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs. 2017 International Conference on Asian Language Processing (IALP), 2018-Janua(December), 391-394. https://doi.org/10.1109/IALP.2017.8300625
- Kroh, M., Ludtke, D., Duzel, S., & Winter, F. (2016). Response error in a web survey and a mailed questionnaire: The role of cognitive functioning. SOEPpapers on Multidisciplinary Panel Data Research, 888. https://doi.org/10.2139/ssrn.2920616
- Kwak, J. A., & Cho, S. K. (2018). Analyzing public opinion with social media data during election periods: A selective literature review. Asian Journal for Public Opinion Research, 5(4), 285-301. https://doi.org/10.15206/ajpor.2018.5.4.285
- Lailiyah, M., Sumpeno, S., & Purnama, I. K. E. (2017). Sentiment analysis of public complaints using lexical resources between Indonesian sentiment lexicon and sentiwordnet. 2017 International Seminar on Intelligent Technology and Its Application: Strengthening the Link Between University Research and Industry to Support ASEAN Energy Sector, ISITIA 2017 - Proceeding, 2017-Janua, 307-312. https://doi.org/10.1109/ISITIA.2017.8124100
- Levi, M., & Stoker, L. (2000). Political trust and trustworthiness. Annual Review of Political Science, 3, 475-507. https://doi.org/10.1146/annurev.polisci.3.1.475
- Li, Y., & Shang, H. (2020). Service quality, perceived value, and citizens' continuoususe intention regarding e-government: Empirical evidence from China. Information and Management, 57(3), 103197. https://doi.org/10.1016/j.im.2019.103197
- Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-184. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
- Madan, A., Arora, R., & Roy, N. R. (2018). Sentiment analysis of Indians on GST. In B. Panda, S. Sharma, & N. Roy (Eds.), Data Science and Analytics. REDSET 2017. Communications in Computer and Information Science, 799, 568-575. https://doi.org/10.1007/978-981-10-8527-7_47
- Martin-Domingo, L., Martin, J. C., & Mandsberg, G. (2019). Social media as a resource for sentiment analysis of airport service quality (ASQ). Journal of Air Transport Management, 78(January), 106-115. https://doi.org/10.1016/j.jairtraman.2019.01.004
- McGregor, S. C. (2019). Social media as public opinion: How journalists use social media to represent public opinion. Journalism, 20(8), 1070-1086. https://doi.org/10.1177/1464884919845458
- Medaglia, R., & Zheng, L. (2016). Characterizing government social media research: Towards a grounded overview model. 2016 49th Hawaii International Conference on System Sciences (HICSS), 2016-March, 2991-2999. https://doi.org/10.1109/HICSS.2016.375
- Mishler, W., & Rose, R. (2001). What are the origins of political trust? Testing institutional and cultural theories in post-communist societies. Comparative Political Studies, 34(1), 30-62. https://doi.org/10.1177/0010414001034001002
- Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P., & Rosenquist, J. N. (2011). Understanding the demographics of Twitter users. Proceedings of the International AAAI Conference on Web and Social Media.
- Monett, D., & Stolte, H. (2016). Predicting star ratings based on annotated reviews of mobile apps. Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, 8(June 2015), 421-428. https://doi.org/10.15439/2016F141
- Murphy, J., Link, M. W., Childs, J. H., Tesfaye, C. L., Dean, E., Stern, M., Pasek, J., Cohen, J., Callegaro, M., & Harwood, P. (2014). Social media in public opinion research: Executive summary of the AAPOR task force on emerging technologies in public opinion research. Public Opinion Quarterly, 78(4), 788-794. https://doi.org/10.1093/poq/nfu053
- OECD. (2017). Government at a Glance 2017. https://doi.org/https://doi.org/https://doi.org/10.1787/gov_glance-2017-en
- Pratama, T., & Purwarianti, A. (2017). Topic classification and clustering on Indonesian complaint tweets for Bandung government using supervised and unsupervised learning. Proceedings - 2017 International Conference on Advanced Informatics: Concepts, Theory and Applications, ICAICTA 2017, July 2016. https://doi.org/10.1109/ICAICTA.2017.8090981
- Psomas, E. (2020). Determining the impact of service quality on citizens' satisfaction and the role of citizens' demographics. The case of the Greek citizen's service centers. TQM Journal. https://doi.org/10.1108/TQM-12-2019-0274
- Qi, B., Costin, A., & Jia, M. (2020). A framework with efficient extraction and analysis of Twitter data for evaluating public opinions on transportation services. Travel Behaviour and Society, 21(May), 10-23. https://doi.org/10.1016/j.tbs.2020.05.005
- Rekha, V., Raksha, R., Patil, P., Swaras, N., & Rajat, G. L. (2019). Sentiment analysis on Indian government schemes using Twitter data. 2019 International Conference on Data Science and Communication, IconDSC 2019, 1-5. https://doi.org/10.1109/IconDSC.2019.8817036
- Salim, M., Peng, X., Almaktary, S., & Karmoshi, S. (2017). The impact of citizen satisfaction with government performance on public trust in the government: Empirical evidence from urban Yemen. Open Journal of Business and Management, 5(2), 348-365. https://doi.org/10.4236/ojbm.2017.52030
- Sayyadiharikandeh, M., Varol, O., Yang, K. C., Flammini, A., & Menczer, F. (2020). Detection of novel social bots by ensembles of specialized classifiers. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2725-2732. https://doi.org/10.1145/3340531.3412698
- Seki, Y. (2016). Use of Twitter for analysis of public sentiment for improvement of local government service. 2016 IEEE International Conference on Smart Computing, SMARTCOMP 2016, 1-3. https://doi.org/10.1109/SMARTCOMP.2016.7501726
- Singh, P., Sawhney, R. S., & Kahlon, K. S. (2018). Sentiment analysis of demonetization of 500 & 1000 rupee banknotes by Indian government. ICT Express, 4(3), 124-129. https://doi.org/10.1016/j.icte.2017.03.001
- Sokolowska, M., Mazurek, M., Majer, M., & Podpora, M. (2019). Classification of user attitudes in Twitter -beginners guide to selected machine learning libraries. IFAC-PapersOnLine, 52(27), 394-399. https://doi.org/10.1016/j.ifacol.2019.12.692
- Sprout Social. (2017). Call-out culture: People, brands & the social media power struggle. https://media.sproutsocial.com/uploads/2017/08/2017-q3-sproutsocial-index.pdf
- Steinmetz, S., Bianchi, A., Tijdens, K., & Biffignandi, S. (2014). Improving web survey quality. A data quality perspective. John Wiley & Sons Ltd.
- Susilawati, E. (2016). Public services satisfaction based on sentiment analysis: Case study: Electrical services in Indonesia. 2016 International Conference on Information Technology System and Innovation (ICITSI), 1-6. https://doi.org/10.1109/ICITSI.2016.7858241
- Tala, F. Z. (2003). A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. Master's project, Universiteit van Amsterdam. https://eprints.illc.uva.nl/id/eprint/740/1/MoL-2003-02.text.pdf
- Twitter. (2021). Search API. Twitter. https://developer.twitter.com/en/docs/twitterapi/premium/search-api/guides/operators
- United Nations Department of Economic and Social Affairs. (2018). United Nations EGovernment Survey 2018: Gearing E-Government to Support Transformation Towards Sustainable and Resilient Societies. United Nations. https://publicadministration.un.org/egovkb/Portals/egovkb/Documents/un/2018-Survey/E-Government Survey 2018_FINAL for web.pdf
- United Nations Department of Economic and Social Affairs. (2020). E-Government Survey 2020 - Digital Government in the Decade of Action for Sustainable Development: With Addendum on COVID-19 Response. United Nations. https://publicadministration.un.org/egovkb/en-us/Reports/UN-E-GovernmentSurvey-2020
- ur Rahim, F., & Shirazi, N. S. (2018). Fiscal decentralization and citizen's satisfaction from local public service delivery in Pakistan. International Journal of Ethics and Systems, 34(1), 122-142. https://doi.org/10.1108/IJOES-04-2017-0066
- Valliant, R., & Dever, J. A. (2011). Estimating propensity adjustments for volunteer web surveys. Sociological Methods and Research, 40(1), 105-137. https://doi.org/10.1177/0049124110392533
- Zhang, L., Hall, M., & Bastola, D. (2018). Utilizing Twitter data for analysis of chemotherapy. International Journal of Medical Informatics, 120, 92-100. https://doi.org/10.1016/j.ijmedinf.2018.10.002
- Zhu, Q. (2018). Classification of trending topics in Twitter. Proceedings - 2018 International Conference on Computational Science and Computational Intelligence, CSCI 2018, 274-277. https://doi.org/10.1109/CSCI46756.2018.00060