DOI QR코드

DOI QR Code

Asymmetric Supercapacitors Based on Co3O4@MnO2@PPy Porous Pattern Core-Shell Structure Cathode Materials

  • Wang, Zihan (Department of Materials Science and Engineering, Liaoning University of Technology) ;
  • Pan, Shuang (Department of Materials Science and Engineering, Liaoning University of Technology) ;
  • Wang, Bing (Department of Materials Science and Engineering, Liaoning University of Technology) ;
  • Qi, Jingang (Department of Materials Science and Engineering, Liaoning University of Technology) ;
  • Tang, Lidan (Department of Materials Science and Engineering, Liaoning University of Technology) ;
  • Liu, Liang (Department of Materials Science and Engineering, Liaoning University of Technology)
  • Received : 2020.12.31
  • Accepted : 2021.02.24
  • Published : 2021.08.28

Abstract

In recent years, supercapacitors have been developed rapidly as a rechargeable energy storage device. And the performance of supercapacitors is depending on electrode materials, the preparation method and performance of electrode materials have become the primary goal of scientific development. This study synthesizes Co3O4@MnO2@PPy cathode material with porous pattern core-shell structure by hydrothermal method and electrodeposition. The result samples are characterized by X-ray diffraction transmission/scanning electron microscope, and X-ray photoelectron spectroscopy. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by PPy depositing. The specific capacitance of Co3O4@MnO2@PPy is 977 F g-1 at 1 A g-1, the capacitance retention rate of 105%. Furthermore, the electrochemical performance of Co3O4@MnO2@PPy//AC asymmetric supercapacitor assembles with AC as the negative electrode material is significantly better than that of MnO2//AC and Co3O4@MnO2//AC. The capacity of Co3O4@MnO2@PPy//AC is 102.78 F g-1. The capacity retention rate is still 120% for 5000 charge-discharge cycles.

Keywords

References

  1. Simon P, Gogotsi Y, Dunn B, Science., 2014, 343(6176), 1210-1211. https://doi.org/10.1126/science.1249625
  2. Borysiewicz M A, Ekielski M, Ogorzalek Z, Wzorek M, Kaczmarsk J, Wojciechowski T, Nanoscale., 2017, 9(22), 7577- 7589. https://doi.org/10.1039/C7NR01320E
  3. Xia X H, Chao D L, Zhang Y Q, Zhan J Y, Zhong Y, Wang X L, Wang Y D, Shen Z X, Tu J P, Fan H J. Small., 2016, 12(22), 3048-3058. https://doi.org/10.1002/smll.201600633
  4. Beguin F, Presser V, Balducci A, Frackowiak E. Adv. Mater., 2014, 26(14), 2219-2251. https://doi.org/10.1002/adma.201304137
  5. Krzysztof Fic, Anetta Platek, Justyna Piwek, Frackowiak, Elzbieta. Mater. Today., 2018, 21(4), 437-454. https://doi.org/10.1016/j.mattod.2018.03.005
  6. Jie Wang, Jing Tang, Yunling Xu, Bing Ding, Zhi Chang, Ya Wang, Xiaodong Hao, Hui Dou, Jung Ho Kim, Xiaogang Zhang, Yusuke Yamauchi, Nano Energy., 2016, 28, 232-240. https://doi.org/10.1016/j.nanoen.2016.08.043
  7. Yunlong Yang, Kuiwen Shen, Ying Liu, Yongtao Tan, Xiaoning Zhao, Jiayu Wu, Xiaoqin Niu, Fen Ran. Nanomicro Lett., 2017, 9(1), 1-25.
  8. Kasturi Palanisamy Rupa, Ramasamy Harivignesh, Meyrick Danielle, Yun Sung Lee, J. Colloid Interface Sci., 2019, 554, 142-156. https://doi.org/10.1016/j.jcis.2019.06.081
  9. Wang Chao, Wang Jing, Xiao Xiang, Guobin Zhong, Shijia Wu, Xu Kaiqim, Zhao Wei, Wei Su, Jie Zeng,Baojun Wu, Weili Zhang, Changcheng Wu, Zhiqiang Shi, Chin Chem Lett., 2019, 30(6), 1269-1272. https://doi.org/10.1016/j.cclet.2019.01.007
  10. Qiqi Zhuang, Jingpei Cao, Yan Wu, Xiaoyan Zhao, J. Colloid Interface Sci., 2020, 567, 347-356. https://doi.org/10.1016/j.jcis.2020.02.022
  11. Wang Nannan, Ding Guopeng, Yang Xiaohong, Zhao Lijun, Mater. Lett., 2019, 255, 126589. https://doi.org/10.1016/j.matlet.2019.126589
  12. Le Tao, Bidan Gerard, Gentile Pascal, Billon Florence, Debiemme-Chouvy Catherine, Perrot Hubert, Sel Ozlem, Aradilla David, Mater. Lett., 2019, 240, 59-61. https://doi.org/10.1016/j.matlet.2018.12.119
  13. Daisuke Tashima, Masaki Hirano, Satoshi Kitazaki, Takuya Eguchi, Seiji Kumagai, Mater. Chem. Phys., 2020, 254.
  14. Zhumu Fu, Longlong Zhu, Fazhan Tao, Pengju Si, Int. J. Hydrog. Energy., 2020, 45(15), 8875-8886. https://doi.org/10.1016/j.ijhydene.2020.01.017
  15. Jiaye Zhu, Qingsheng Wu, Jiangfeng Li, Chemistry Select., 2020, 5(33), 10407-10423.
  16. Li X B, Xu G R, Ceram. Int., 2017, 43(12), 8963-8969. https://doi.org/10.1016/j.ceramint.2017.04.036
  17. Yuxin Wang, Bingsi Liu, Zhiqiang Shi, Fengdan Liu, Trans. Tianjin Univ., 2012, 18(3), 217-223. https://doi.org/10.1007/s12209-012-1799-1
  18. Huang Y X, Peng L L, Liu Y, Zhao G J, Chen J Y, Yu G H, ACS Appl. Mater. Interfaces., 2016, 8(24), 15205- 15215. https://doi.org/10.1021/acsami.6b02214
  19. Yu D S, Dai L M. J. Phys. Chem. Lett., 2010, 1(2), 467-470. https://doi.org/10.1021/jz9003137
  20. Hui G, Fan L Z, Zhang H, Qu X, Electrochim. Acta., 2011, 56(2), 964-968. https://doi.org/10.1016/j.electacta.2010.09.078
  21. Zhao D P, Liu H Q, Wu X, Nano Energy., 2019, 57, 363-370. https://doi.org/10.1016/j.nanoen.2018.12.066
  22. Deng M, Yang B, Yong H U, J. Mater. Sci., 2005, 40(18), 5021-5023. https://doi.org/10.1007/s10853-005-1623-6
  23. Patake V D, Lokhande C D, Joo O S, Appl. Surf. Sci., 2009, 255(7), 4192-4196. https://doi.org/10.1016/j.apsusc.2008.11.005
  24. Hu C C, Huang Y H, Chang K H, J. Power Sources., 2002, 108(1-2), 117-127. https://doi.org/10.1016/S0378-7753(02)00011-3
  25. Xu B, Yu L, Sun M, Ye F, Zhong Y H, Cheng G, Wang H, Mai Y L, RSC Advance., 2017, 7(24), 14910-14916. https://doi.org/10.1039/C7RA00787F
  26. Jeyasubramanian K, Gokul R T, Purushothaman S, Kumar M V, Sushmitha I, Electrochim. Acta., 2017, 227, 401-409. https://doi.org/10.1016/j.electacta.2017.01.044
  27. Patil U M, Salunkhe R R, Gurav K V, Lokhande C D, Appl. Surf. Sci., 2008, 255(5), 2603-2607. https://doi.org/10.1016/j.apsusc.2008.07.192
  28. Kim G P, Sun H H, Manthiram A, Nano Energy., 2016, 30, 130-137. https://doi.org/10.1016/j.nanoen.2016.10.003
  29. Guo W, Hou L, Hou B, Guo Y L, J. Alloys Compd., 2017, 708, 524-530. https://doi.org/10.1016/j.jallcom.2017.02.276
  30. L. P. Khoroshun, Int. Appl. Mech., 2019, 55(2), 187-198. https://doi.org/10.1007/s10778-019-00949-z
  31. Bastian Krueger, Luis Balboa, Jan Frederik Dohmann, ChemElectroChem., 2020, 7(17), 3590-3596. https://doi.org/10.1002/celc.202000441
  32. Deivis Plausinaitis, Linas Sinkevicius, Urte Samukaite-Bubniene, Talanta., 2020, 220, 121414. https://doi.org/10.1016/j.talanta.2020.121414
  33. Smita C. Deogaonkar, J. Text. Inst., 2020, 111(10), 1530-1537. https://doi.org/10.1080/00405000.2019.1710905
  34. Murat Ates, Ozge Kuzgun, Plastics, Rubber and Composites 2020, 49(8), 342-356. https://doi.org/10.1080/14658011.2020.1753336
  35. Nyholm L, Nystrom G, Mihranyan A, Stromme M, Adv. Mater., 2011, 23(33), 3751-3769. https://doi.org/10.1002/adma.201004134
  36. Yuan J J, Chen C H, Hao Y, Zhang X K, Zou B, Agrawal R, Wang C L, Yu H J, Zhu X R, Yu Y, Xiong, Z Z, Luo Y, Li H X, Xie Y M, J. Alloys Compd., 2017, 691, 34-39. https://doi.org/10.1016/j.jallcom.2016.08.229
  37. Liu J L, Zhou W W, Lai L F, Yang H P, Lim S H, Zhen Y D, Yu T, Shen Z X, Lin J Y, Nano energy, 2013, 2(5), 726-732. https://doi.org/10.1016/j.nanoen.2012.12.008
  38. Khan H Y, Malook K, Shah M, J. Mater. Sci. Mater. Electron., 2018, 29(11), 9090-9098. https://doi.org/10.1007/s10854-018-8936-0
  39. Ahmed Bakry, J. Appl. Polym. Sci., 2021, 138(1), 49643. https://doi.org/10.1002/app.49643
  40. Dafeng Zhang, Yunxiang Tang, Xiaoxue Qiu, Jie Yin, Xipeng Pu, J. Alloys Compd., 2020, 845, 155569. https://doi.org/10.1016/j.jallcom.2020.155569
  41. Qingwei Lin, Mingjun Fan, Xue Peng, Jianmin Ma, Biyun Liu, J. Hazard. Mater., 2020, 400, 123167. https://doi.org/10.1016/j.jhazmat.2020.123167
  42. Fan W, Wen Z Y, Shen C, Wu X W, Liu J J, Phys. Chem. Chem. Phys., 2015, 18(2), 926-931. https://doi.org/10.1039/c5cp06815k
  43. Wang N, Zhao P, Liang K, Yao M Q, Yang Y, Hu W C, Chem. Eng. J., 2017, 307, 105-112. https://doi.org/10.1016/j.cej.2016.08.074
  44. Huang M, Zhang Y X, Li F, Zhang L L, Wen Z Y, Liu Q, J. Power Sources., 2014, 252, 98-106. https://doi.org/10.1016/j.jpowsour.2013.12.030
  45. Yang C Z, Zhou M, Xu Q, Phys. Chem. Chem. Phys., 2013, 15(45), 19730-19740. https://doi.org/10.1039/c3cp53504e