DOI QR코드

DOI QR Code

외국인 관광객 리뷰데이터를 활용한 토픽모델링 기반의 공간분석: 대구광역시를 사례로

Spatial analysis based on topic modeling using foreign tourist review data: Case of Daegu

  • 정지우 (경북대학교 문헌정보학과) ;
  • 김서윤 (영남대학교 통계학과) ;
  • 김현유 (경북대학교 컴퓨터공학과) ;
  • 윤주혁 (경북대학교 컴퓨터공학과) ;
  • 장원준 (대구디지털산업진흥원 빅데이터활용센터) ;
  • 김건욱 (대구디지털산업진흥원 빅데이터활용센터)
  • Jung, Ji-Woo (Department of Library and Information Science, Kyungpook University) ;
  • Kim, Seo-Yun (Department of Statistics, Yeungnam University) ;
  • Kim, Hyeon-Yu (Department of Computer Science, Kyungpook University) ;
  • Yoon, Ju-Hyeok (Department of Computer Science, Kyungpook University) ;
  • Jang, Won-Jun (Big Data Center, Daegu Digital Industry Promotion Agency) ;
  • Kim, Keun-Wook (Big Data Center, Daegu Digital Industry Promotion Agency)
  • 투고 : 2021.05.21
  • 심사 : 2021.08.20
  • 발행 : 2021.08.28

초록

스마트폰 기반의 관광 플랫폼들이 활성화되면서 리뷰 데이터를 활용한 정책 수립 및 서비스 고도화가 다양한 분야에서 이루어지고 있다. 관광 리뷰 데이터를 활용한 선행연구들의 경우 국내 관광객 중심의 연구가 대다수 수행되었으며, 외국인 관광객 연구의 경우 일부 언어로 수집된 데이터와 텍스트 마이닝 기법에 한정하여 연구가 수행되었다. 이에 본 연구에서는 온라인 리뷰 사이트를 통해 '대구 명소' 키워드를 지정하여 외국인들이 작성한 리뷰 데이터 3,515건을 수집하였다. 그리고 LDA 기반의 토픽모델링을 수행하여 관광 토픽을 도출하였으며, 각 토픽별 전역 및 국지적 공간 분석을 수행한 점이 선행연구와 차별성이라 할 수 있다. 분석 결과 전역적 공간 자기상관이 존재하며, 외국인들이 주로 방문하는 관광지들이 국지적으로 결집되어 있음을 확인하였다. 또한 대다수 토픽에서 중구를 중심으로 핫스팟이 도출되었으며, 분석 결과를 바탕으로 지자체 외국인 관광정책 수립 및 토픽모델링 기반의 공간분석 연구의 기초연구로 활용되길 기대하며, 본 연구의 한계점 또한 제시하였다.

As smartphone-based tourism platforms have become active, policy establishment and service enhancement using review data are being made in various fields. In the case of the preceding studies using tourism review data, most of the studies centered on domestic tourists were conducted, and in the case of foreign tourist studies, studies were conducted only on data collected in some languages and text mining techniques. In this study, 3,515 review data written by foreigners were collected by designating the "Daegu attractions" keyword through the online review site. And LDA-based topic modeling was performed to derive tourism topics. The spatial approach through global and local spatial autocorrelation analysis for each topic can be said to be different from previous studies. As a result of the analysis, it was confirmed that there is a global spatial autocorrelation, and that tourist destinations mainly visited by foreigners are concentrated locally. In addition, hot spots have been drawn around Jung-gu in most of the topics. Based on the analysis results, it is expected to be used as a basic research for spatial analysis based on local government foreign tourism policy establishment and topic modeling. And The limitations of this study were also presented.

키워드

참고문헌

  1. S. M. Lee & S. E. Ryu. (2018). A Study on the Tourism Promotion Plan of Huinnyeoul Culture Village Using Online Review Big Data Analysis. Journal of Hotel & Resort, 19, 115-130.
  2. J. Y. Ha & S. H. Lee. (2018). Discovering potential cultural tourism resources through online review of local visitors : Focused on Imsil county, Jeonbuk Province. Journal of Region & Culture, 5 4), 67-85. DOI:10.26654/iagc.2018.5.4.067
  3. J. H. Im & Y. H. Kim. (2020). Examining Public Opinion on Iksan Tourism Using Social Media Analytics. Tourism Research, 45(3), 427-441. DOI:10.32780/ktidoi.2020.45.3.427
  4. Y. H. Yu & H. C. Lee. (2019). A study on the factors influencing regional tourism performance considering spatial autocorrelation. International Journal of Tourism and Hospitality Research, 33(2), 35-46. DOI : 10.21298/IJTHR.2019.2.33.2.35
  5. S. T. Park & Y. K. Kim. (2019). A Study on Deriving an Optimal Route for Foreign Tourists through the Analysis of Big Data. Journal of Convergence for Information Technology, 9(10), 56-63. DOI:10.22156/CS4SMB.2019.9.10.056
  6. S. H. Cho, B. S. Kim, M. S. Park, G. C. Lee & P. S. Kang. (2017). Extraction of Satisfaction Factors and Evaluation of Tourist Attractions based on Travel Site Review Comments. Journal of the Korean Institute of Industrial Engineers , 43(1), 62-71. DOI:10.7232/JKIIE.2017.43.1.062
  7. A. P. Kirilenko & S. O. Stepchenckova. (2019). Automated Topic Modeling of Negative Tourist Reviews. e-Review of Tourism Research, 17(4), 532-545
  8. I. R. Putri & R. Kusumaningrum. (2017). Latent Dirichlet Allocation (LDA) for Sentiment Analysis Toward Tourism Review in Indonesia. Journal of Physics: Conference Series, 801(1), 012073 DOI:10.1088/1742-6596/801/1/012073
  9. B. Mathayomchan. & K. Sripanidkulcha.. (2019, July). Utilizing Google Translated Reviews from Google Maps in Sentiment Analysis for Phuket Tourist Attractions. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE). pp(260-265). Chonburi : IEEE DOI : 10.1109/JCSSE.2019.8864150
  10. Y. Sugiyama, J. Zheng, T. Matsuo, & H. Iwamoto (2018, July). Multilingual Review Analysis for Attracting Foreign Visitors to Local Cities -About Sightseeing in Hamamatsu city-. 2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI) IIAI-AAI Advanced Applied Informatics (IIAI-AAI). pp(741-746). Yonago : IEEE DOI:10.1109/IIAI-AAI.2018.00153
  11. M. Steyvers & T. Griffiths. (2007). Probabilistic topic models. Handbook of latent semantic analysis. Psychology Press. DOI : 10.4324/9780203936399.ch21
  12. W. S. Kim & D. S. K. (2020). Deriving the Determinants of Hotel Service Quality According to Hotel Class in Korea by Using LDA Topic Modeling. Journal of International Trade & Commerce, 16, 779-791. DOI:10.16980/jitc.16.5.202010.779
  13. S. G. Nam, J. H. Kim & Y. J. Yu. (2020) Understanding the Shopping Tourist Perceptions based on Text Analytics. Journal of New Industry and Business, 38(2), 3-21 DOI:10.30753/emr.2020.38.2.001
  14. H. J. Yun & M. H. Park. (2014). Multivariate Spatial Autocorrelation on the Number of Tourists and Natural Amenities. Journal of Tourism Management Research, 18(58), 135-150.
  15. J. M. Yun & C. K. Seo. (2010). Deriving the Declining Areas and Analysing Their Spatial Characteristics Using the Spatial Autocorrelation Measure. Journal of the Korean Association of Geographic Information Studies, 13(3), 64-73. DOI : 10.11108/kagis.2010.13.3.064
  16. D. H. Lee, S. B. Yoon & J. S. Kim (2015). Analysis of the Crime Pattern and Influencing Factors by the Spatial Autocorrelation in Busan. Journal of the Korean Regional Development Association, 27(2), 259-276.