References
- Abolfathi, A., Waters, T.P. and Brennan, M.J. (2013), "On the performance of a nonlinear vibration isolator consisting of axially loaded curved beams", 11th International Conference RASD, Pisa, July.
- Alabuzhev, P.A., Gritchin, L., Kim, L., Migirenko, G., Chon, V. and Stepanov, P. (1989), Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness, Hemisphere Publishing, New York.
- Brennan, M.J. and Dayou, J. (2000), "Global control of vibration using a tunable vibration neutralizer", J. Sound Vib., 232(3), 585-600. https://doi.org/10.1006/jsvi.1999.2757.
- Carrella, A. and Friswell, M.A. (2008), "A passive vibration isolator incorporating a composite bistable plate", 6th Euromech Nonlinear Dynamics Conference, ENOC.
- Carrella, A., Brennan, M. and Waters, T.P. (2007), "Optimization of a quasi-zero-stiffness isolator", J. Mech. Sci. Technol., 21, 946-949. https://doi.org/10.1007/BF03027074.
- Carrella, A., Brennan, M. and Waters, T.P. (2007), "Static analysis for a passive vibration isolator with quasi-zero stiffness characteristic", J. Sound Vib., 301(3-5), 678-689. https://doi.org/10.1016/j.jsv.2006.10.011.
- Correa, D.M., Klatt, T.D., Cortes, S.A., Haberman, M.R., Kovar, D. and Seepersad, C.C. (2015), "Negative stiffness honeycombs for recoverable shock isolation", Rapid Prototyp. J., 21(2), 193-200. https://doi.org/10.1108/RPJ-12-2014-0182.
- Ding, H., Lu, Z.Q. and Chen, L.Q. (2019), "Nonlinear isolation of transverse vibration of pre-pressure beams", J. Sound Vib., 442, 738-751. https://doi.org/10.1016/j.jsv.2018.11.028.
- Gohari, M. and Tahmasebi, M. (2014), "Active off-road seat suspension system using intelligent active force control", J. Low Freq. Nois. Vib. Act. Control, 34(4), 475-490. https://doi.org/10.1260%2F0263-0923.34.4.475. https://doi.org/10.1260%2F0263-0923.34.4.475
- Golewski, G.L. (2019), "New principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
- Jang, S.J., Brennan, M.J., Rustighi, E. and Jung, H.J. (2012), "A simple method for choosing the parameters of a two degree-offreedom tuned vibration absorber", J. Sound Vib., 331(21), 4658-4667. https://doi.org/10.1016/j.jsv.2012.05.020.
- Kahya, V. and Araz, O. (2017), "Series tuned mass dampers in train-induced vibration control of railway bridges", Struct. Eng. Mech., 61(4), 453-461. https://doi.org/10.12989/sem.2017.61.4.453.
- Le, T.D. and Ahn, K.K. (2012), "Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure", J. Mech. Sci. Technol., 26(12), 3873-3884. https://doi.org/10.1007/s12206-012-0890-9.
- Li, Y.L. and Xu, D.L. (2018), "Force transmissibility of floating raft systems with quasi-zero-stiffness isolators", J. Vib. Control, 24, 3608-3616. https://doi.org/10.1177%2F1077546317708460. https://doi.org/10.1177%2F1077546317708460
- Liu, D.W., Liu, Y., Sheng, D.F. and Liao, W.Y. (2018), "Seismic response analysis of an isolated structure with QZS under nearfault vertical earthquakes", Shock Vib., 2018, Article ID 9149721. https://doi.org/10.1155/2018/9149721.
- Lu, Z., Chen, X., Li, X. and Li, P. (2017), "Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges", Struct. Eng. Mech., 62(4), 55-64. https://doi.org/10.12989/sem.2017.62.1.055.
- Muhammad, T. and Singh, A.V. (2005), "The buckling of rectangular plates with opening using a polynomial method", Struct. Eng. Mech., 21(2), 151-168. https://doi.org/10.12989/sem.2005.21.2.151.
- Ning, D., Sun, S., Zhang, J., Du, H., Li, W. and Wang, X. (2016), "An active seat suspension design for vibration control of heavy-duty vehicles", J. Low Freq. Nois. Vib. Act. Control, 4(35), 264-278. https://doi.org/10.1177%2F0263092316676389. https://doi.org/10.1177%2F0263092316676389
- Robertson, W., Wood, R., Cazzolato, B. and Zander, A. (2007), "Zero-stiffness magnetic springs for active vibration isolation", Proceedings of the 6th International Symposium on Active Noise and Vibration Control, Cairns, July.
- Shi, X., Zhu, S., Ni, Y. and Li, J. (2018), "Vibration suppression in high-speed trains with negative stiffness dampers", Smart Struct. Syst., 21(5), 653-668. https://doi.org/10.12989/sss.2018.21.5.653.
- Sun, X., Jing, X., Xu, J. and Cheng, Li. (2014), "Vibration isolation via a scissor-like structured platform", J. Sound Vib., 333, 2404-2420. https://doi.org/10.1016/j.jsv.2013.12.025.
- Tokarev, A., Zotov, A. and Valeev, A. (2017), "The application of passive vibroprotective systems having power characteristics with hysteresis loops of rectangular shape for the main pumping units", Procedia Eng., 176, 118-127. https://doi.org/10.1016/j.proeng.2017.02.279.
- Valeev, A.R. (2017), "Vibration isolating metamaterial with arcstructure", IOP Conf. Proc., 225, 012142. https://doi.org/10.1088/1757-899X/225/1/012142.
- Valeev, A., Zotov, A. and Kharisov, Sh. (2015), "Designing of compact low frequency vibration isolator with quasi-zero stiffness", J. Low Freq. Nois. Vib. Act. Control, 34 (4), 459-474. https://doi.org/10.1260/0263-0923.34.4.459.
- Wang, Y., Li, S.M., Cheng, C. and Su, Y.Q. (2018), "Adaptive control of a vehicle-seat-human coupled model using quasizero-stiffness vibration isolator as seat suspension", J. Mech. Sci. Technol., 32, 2973-2985. https://doi.org/10.1007/s12206-018-0601-2.
- Zheng, Y., Zhang, X., Luo, Y., Yan, B. and Ma, C. (2016), "Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring", J. Sound Vib., 360, 31-52. https://doi.org/10.1016/j.jsv.2015.09.019.
- Zhou, J.X., Xiao, Q.Y., Xu, D.L., Ouyang, H.J. and Li, Y.L. (2017), "A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform", J. Sound Vib., 394, 59-74. https://doi.org/10.1016/j.jsv.2017.01.021.
- Zhu, Q., Hui, X., Du, Y. and Zhang, Q. (2019), "A full path assessment approach for vibration serviceability and vibration control of footbridges", Struct. Eng. Mech., 70(6), 765-779. https://doi.org/10.12989/sem.2019.70.6.765.