DOI QR코드

DOI QR Code

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman (Quantum Technology Institute, Korea Research Institute of Standards and Science) ;
  • Choi, Gahyun (Quantum Technology Institute, Korea Research Institute of Standards and Science) ;
  • Lee, Sun Kyung (Quantum Technology Institute, Korea Research Institute of Standards and Science) ;
  • Park, Kibog (Department of Physics, Ulsan National Institute of Science and Technology) ;
  • Song, Woon (Quantum Technology Institute, Korea Research Institute of Standards and Science) ;
  • Lee, Dong-Hoon (Department of Science of Measurement, University of Science and Technology) ;
  • Chong, Yonuk (Department of Nano Engineering, Sungkyunkwan University)
  • Received : 2021.05.07
  • Accepted : 2021.06.07
  • Published : 2021.08.25

Abstract

We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.

Keywords

Acknowledgement

This work is supported by the R&D Convergence Program of the National Research Council of Science and Technology (NST) (CAP-15-08-KRISS), the Korea Research Institute of Standards and Science (KRISS) (GP2021-0010-03), and the Engineering Research Center (ERC) supported through the National Research Foundation (NRF) funded by the Ministry of Science and ICT in Korea (2019R1A5A1027055). We thank Dong-hyung Kim and Yongjai Cho for their help in characterizing the optical thin-film properties.

References

  1. C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992). https://doi.org/10.1103/PhysRevLett.68.3121
  2. S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.- A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, "Satellite-to-ground quantum key distribution," Nature 549, 43-47 (2017). https://doi.org/10.1038/nature23655
  3. J. L. O'Brien, "Optical quantum computing," Science 318, 1567-1570 (2007). https://doi.org/10.1126/science.1142892
  4. R. Blatt and D. Wineland, "Entangled states of trapped atomic ions," Nature 453, 1008-1015 (2008). https://doi.org/10.1038/nature07125
  5. S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, "Advances in photonic quantum sensing," Nat. Photonics 12, 724-733 (2018). https://doi.org/10.1038/s41566-018-0301-6
  6. Y.-Q. Fang, W. Chen, T.-H. Ao, C. Liu, L. Wang, X.-J. Gao, J. Zhang, and J.-W. Pan, "InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm," Rev. Sci. Instrum. 91, 083102 (2020). https://doi.org/10.1063/5.0014123
  7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/RevModPhys.74.145
  8. A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas, "High-fidelity readout of trapped-ion qubits," Phys. Rev. Lett. 100, 200502 (2008). https://doi.org/10.1103/PhysRevLett.100.200502
  9. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, "Photon-efficient imaging with a single-photon camera," Nat. Commun. 7, 12046 (2016). https://doi.org/10.1038/ncomms12046
  10. G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, "Fabrication and properties of an ultrafast NbN hot-electron single-photon detector," IEEE Trans. Appl. Supercond. 11, 574-577 (2001). https://doi.org/10.1109/77.919410
  11. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, "Superconducting nanowire single-photon detectors: physics and applications," Supercond. Sci. Technol. 25, 063001 (2012). https://doi.org/10.1088/0953-2048/25/6/063001
  12. C. Lv, W. Zhang, L. You, P. Hu, H. Wang, H. Li, C. Zhang, J. Huang, Y. Wang, X. Yang, Z. Wang, and X. Xie, "Improving maximum count rate of superconducting nanowire single-photon detector with small active area using series attenuator," AIP Adv. 8, 105018 (2018). https://doi.org/10.1063/1.5049549
  13. I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, J. Chang, A. W. Elshaari, J. R. Zichi, Y. J. Van Staaden, J. P. E. Swens, N. Kalhor, A. Guardiani, Y. Meng, K. Zou, S. Dobrovolskiy, A. W. Fognini, D. R. Schaart, D. Dalacu, P. J. Poole, M. E. Reimer, X. Hu, S. F. Pereira, V. Zwiller, and S. N. Dorenbos, "Efficient single-photon detection with 7.7 ps time resolution for photoncorrelation measurements," ACS Photonics 7, 1780-1787 (2020). https://doi.org/10.1021/acsphotonics.0c00433
  14. B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Pena, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, "Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector," Nat. Photonics 14, 250-255 (2020). https://doi.org/10.1038/s41566-020-0589-x
  15. D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, and V. B. Verma, "Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm," Optica 7, 1649-1653 (2020). https://doi.org/10.1364/OPTICA.400751
  16. J. Chang, J. W. N. Los, J. O. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J. R. Zichi, S. F. Pereira, H. P. Urbach, V. Zwiller, S. N. Dorenbos, and I. Esmaeil Zadeh, "Detecting telecom single photons with (99.5 +0.5 -2.07 ) % system detection efficiency and high time resolution," APL Photonics 6, 036114 (2021). https://doi.org/10.1063/5.0039772
  17. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, "Compact cryogenic self-aligning fiberto-detector coupling with losses below one percent," Opt. Express 19, 9102-9110 (2011). https://doi.org/10.1364/OE.19.009102
  18. E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, "Review of superconducting nanowire single-photon detector system design options and demonstrated performance," Opt. Eng. 53, 081907 (2014). https://doi.org/10.1117/1.OE.53.8.081907
  19. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, "Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths," Sci. Rep. 5, 10941 (2015). https://doi.org/10.1038/srep10941
  20. W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, "Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering," Phys. Rev. Appl. 12, 044040 (2019). https://doi.org/10.1103/PhysRevApplied.12.044040
  21. R. Gourgues, J. W. N. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, and I. E. Zadeh, "Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K," Opt. Express 27, 24601-24609 (2019). https://doi.org/10.1364/OE.27.024601
  22. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, "Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm," Appl. Phys. Lett. 98, 251105 (2011). https://doi.org/10.1063/1.3600793
  23. H. Li, X. Yang, L. You, H. Wang, P. Hu, W. Zhang, Z. Wang, and X. Xie, "Improving detection efficiency of superconducting nanowire single-photon detector using multilayer antireflection coating," AIP Adv. 8, 115022 (2018). https://doi.org/10.1063/1.5034374
  24. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, "Detecting single infrared photons with 93% system efficiency," Nat. Photonics 7, 210-214 (2013). https://doi.org/10.1038/nphoton.2013.13
  25. V. B. Verma, B. Korzh, F. Bussieres, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, "High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K," Appl. Phys. Lett. 105, 122601 (2014). https://doi.org/10.1063/1.4896045
  26. Corning, "Corning® SMF-28® ultra optical fiber," (Corning, Published date: November 2014), https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (Accessed date: 15 February 2021)
  27. L. Redaelli, V. Zwiller, E. Monroy, and J. M. Gerard, "Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics," Supercond. Sci. Technol. 30, 035005 (2017). https://doi.org/10.1088/1361-6668/30/3/035005
  28. V. B. Verma, B. Korzh, F. Bussieres, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, "High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films," Opt. Express 23, 33792-33801 (2015). https://doi.org/10.1364/OE.23.033792
  29. L. Gao, F. Lemarchand, and M. Lequime, "Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering," Opt. Express 20, 15734-15751 (2012). https://doi.org/10.1364/OE.20.015734
  30. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965). https://doi.org/10.1364/JOSA.55.001205
  31. R. R. Willey, Field Guide to Optical Thin Films (SPIE Press, Bellingham, WA, USA, 2006).
  32. R. H. Hadfield, "Single-photon detectors for optical quantum information applications," Nat. Photonics 3, 696-705 (2009). https://doi.org/10.1038/nphoton.2009.230
  33. S. Miki, M. Yabuno, T. Yamashita, and H. Terai, "Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector," Opt. Express 25, 6796-6804 (2017). https://doi.org/10.1364/OE.25.006796
  34. S. Chen, L. You, W. Zhang, X. Yang, H. Li, L. Zhang, Z. Wang, and X. Xie, "Dark counts of superconducting nanowire single-photon detector under illumination," Opt. Express 23, 10786-10793 (2015). https://doi.org/10.1364/OE.23.010786
  35. T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, "Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications," J. Phys. D: Appl. Phys. 50, 025106 (2017). https://doi.org/10.1088/1361-6463/50/2/025106
  36. G. Lavareda, Y. Vygranenko, A. Amaral, C. Nunes de Carvalho, N. P. Barradas, E. Alves, and P. Brogueira, "Dependence of optical properties on composition of silicon carbonitride thin films deposited at low temperature by PECVD," J. Non. Cryst. Solids 551, 120434 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120434
  37. I.-S. Lee, J.-W. Kim, C.-J. Youn, S.-K. Park, and Y.-B. Hahn, "Preparation and characterization of TiO2 thin films by PECVD on Si substrate," Korean J. Chem. Eng. 13, 473-477 (1996). https://doi.org/10.1007/BF02705996
  38. S. Krapick, M. Hesselberg, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, "Superconducting single-photon detectors with enhanced high-efficiency bandwidth," arXiv:1706.00004 (2017).
  39. A. Mukhtarova, L. Redaelli, D. Hazra, H. Machhadani, S. Lequien, M. Hofheinz, J.-L. Thomassin, F. Gustavo, J. Zichi, V. Zwiller, E. Monroy, and J.-M. Gerard, "Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer," Opt. Express 26, 17697-17704 (2018). https://doi.org/10.1364/OE.26.017697