DOI QR코드

DOI QR Code

Sorption of Pd on illite, MX-80 bentonite and shale in Na-Ca-Cl solutions

  • Received : 2019.01.08
  • Accepted : 2020.09.02
  • Published : 2021.03.25

Abstract

This paper examines sorption of Pd(II) onto illite, MX-80 bentonite, and Queenston shale in Na-Ca-Cl solutions of varying ionic strength (IS) from 0.01 to 6.0 mol/L (M) and pHc ranging from 3 to 9 under atmospheric conditions. A 2-site protolysis non-electrostatic surface complexation and cation exchange model was applied to the Pd sorption onto illite and MX-80 using PHREEQC, and the model results were compared to the experimental ones obtained in this work. Surface complexation and cation exchange constants were estimated for both illite and MX-80 through the optimization process to bring the predicted distribution coefficients from the model into alignment with the experimentally derived values. These optimized surface complexation constants were compared to existing linear free energy relationships (LFER).

Keywords

Acknowledgement

The authors would like to thank Dr. Tammy Yang (the Nuclear Waste Management Organization of Canada) for her helpful comments on the sorption experiments. The authors wish to acknowledge Drs. Yoshihisa Iida and Tetsuji Yamaguchi (Japan Atomic Energy Agency), Dr. Takumi Saito (the University of Tokyo), and Dr. Peter Vilks (Canada Nuclear Laboratory) for the fruitful discussion on Pd sorption experiments and modelling. The authors would also like to thank Dr. Naoki Sugiyama of Agilent Technologies for helpful discussions on Pd measurement and improvement of the detection limit of Pd by ICP-MS in saline solutions.

References

  1. J. Noronha, Deep Geological Repository Conceptual Design Report, Crystalline/ Sedimentary Rock Environment, Technical Report, Nuclear Waste Management Organization, May 2016. APM-REP-00440-0015 R001.
  2. Nuclear Fuel Waste Act, Statute of Canada, 2002 c. 23.
  3. P. Vilks, T. Yang, Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditions - Updated Sorption Values, Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-03.
  4. P. Vilks, N.H. Miller, Sorption Studies with Sedimentary Rocks under Saline Conditions, Technical Report, Nuclear Waste Management Organization, 2014. NWMO-TR-2013-22.
  5. T.L. Rakitskaya, V.O. Vasylechko, T.A. Kiose, G.M. Dzhyga, G.V. Gryshchouk, V.Y. Volkova, Some features of Pd(II) and Cu(II) adsorption on bentonite, Adsorpt. Sci. Technol. 35 (5-6) (2017) 482-489. https://doi.org/10.1177/0263617417697713
  6. S. Shen, T. Pan, X. Liu, L. Yuan, Y. Zhang, J. Wang, Z. Guo, Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J, J. Colloid Interface Sci. 345 (2010) 12-18. https://doi.org/10.1016/j.jcis.2010.01.049
  7. S. Cataldo, N. Muratore, S. Orecchio, A. Pettignano, Enhancement of adsorption ability of calcium alginate gel beads towards Pd(II) ion. A kinetic and equilibrium study on hybrid Laponite and Montmorillonite-alginate gel beads, Appl. Clay Sci. 118 (2015) 162-170. https://doi.org/10.1016/j.clay.2015.09.014
  8. T. Kobayashil, T. Sasaki, K. Ueda, A. Kitamura, Sorption behavior of nickel and palladium in the presence of NH3(aq)/NH4+, Mater. Res. Soc. Symp. Proc. 1518 (2013) 231-236.
  9. Y. Tachi, T. Shibutani, H. Sato, M. Shibata, Sorption and Diffusion Behavior of Palladium in Bentonite, Granodiorite and Tuff, Technical Report, Japan Nuclear Cycle Development Institute, 1999.
  10. D.L. Parkhurst, C. Appelo, Description of input and examples for PHREEQC version 3 - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Surv. Tech. Methods (2013) book 6, ch. A43.
  11. W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, third ed., John Wiley & Sons, Inc., New York, 1996.
  12. M.H. Bradbury, B. Baeyens, Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides, Geochem. Cosmochim. Acta 69 (4) (2005) 875-892. https://doi.org/10.1016/j.gca.2004.07.020
  13. M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part I: titration measurement and the sorption of Ni, Co, Eu, and Sn, Geochem. Cosmochim. Acta 73 (4) (2009) 990-1003. https://doi.org/10.1016/j.gca.2008.11.017
  14. M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part II: actinide sorption and linear free energy relationships, Geochem. Cosmochim. Acta 73 (4) (2009) 1004-1013. https://doi.org/10.1016/j.gca.2008.11.016
  15. R. Marsac, N.I. Banik, J. Lutzenkirchen, C.M. Marquardt, K. Dardenne, D. Schild, J. Rothe, A. Diascorn, T. Kupcik, T. Schafer, H. Geckeis, Neptunium redox speciation at the Illite surface, Geochem. Cosmochim. Acta 152 (2015) 39-51. https://doi.org/10.1016/j.gca.2014.12.021
  16. S. Nagasaki, J. Riddoch, T.S. Saito, J. Goguen, A. Walker, T. Yang, Sorption behaviour of Np(IV) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 313 (2017) 1-11. https://doi.org/10.1007/s10967-017-5290-2
  17. D. Soltermann, B. Baeyens, M.H. Bradbury, M.M. Fernandes, Fe(II) uptake on natural montmorillonites. II. Surface complexation modeling, Environ. Sci. Technol. 48 (15) (2014) 8698-8705. https://doi.org/10.1021/es501902f
  18. T. Sasaki, K. Ueda, T. Saito, N. Aoyagi, T. Kobayashi, I. Takagi, T. Kimura, Y. Tachi, Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling, J. Nucl. Sci. Technol. 53 (4) (2016) 592-601. https://doi.org/10.1080/00223131.2015.1066719
  19. S. Nagasaki, Sorption Properties of Np on Shale, Illite and Bentonite under Saline, Oxidizing and Reducing Conditions, Technical Report, Nuclear Waste Management Organization, January 2018. NWMO-TR-2018-02.
  20. T. Fanghanel, V. Neck, J.I. Kim, The ion product of H2O, dissociation constants of H2CO3 and pitzer parameters in the system Na+/H+/OH-/HCO3-/CO32-/ClO4-/H2O at 25℃, J. Solut. Chem. 25 (1996) 327-343. https://doi.org/10.1007/BF00972890
  21. M. Altmaier, V. Metz, V. Neck, R. Muller, T. Fanghanel, Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl.4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25℃, Geochem. Cosmochim. Acta 67 (19) (2003) 3595-3601. https://doi.org/10.1016/S0016-7037(03)00165-0
  22. M. Altmaier, V. Neck, T. Fanghanel, Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes, Radiochim. Acta 96 (9-11) (2009) 541-550.
  23. S. Nagasaki, T. Saito, T.T. Yang, Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 308 (1) (2016) 143-153.
  24. N. Sugiyama, Agilent Technologies, Private Communication, 2013.
  25. I. Grenthe, A. Plyasunov, On the use of semiempirical electrolyte theories for the modeling of solution chemical data, Pure Appl. Chem. 69 (5) (1997) 951-958. https://doi.org/10.1351/pac199769050951
  26. Thermodynamic database, Japan atomic energy agency, TDB Ver. 2014/03, https://migrationdb.jaea.go.jp/cgi-bin/db_menu.cgi?title=TDB&ej=1,June 2014.
  27. PHREEQC (version 3)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, United States Geol. Surv., https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/.
  28. L. Charlet, C. Tournassat, Fe(II)eNa(I)eCa(II) cation exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride e metal ion pairs in seawater, Aquat. Geochem. 11 (2005) 115-137. https://doi.org/10.1007/s10498-004-1166-5
  29. S. Pivovarov, Physico-chemical modeling of heavy metals (Cd, Zn, Cu) in natural environments, Encycloped. Surface Colloid Sci. 5 (2004) 468-492, 2004 Update Supplement.
  30. F.P. Bertetti, Determination of Sorption Properties for Sedimentary Rocks under Saline, Reducing Conditions e Key Radionuclides, Technical Report, Nuclear Waste Management Organization, June 2016. NWMO-TR-2016-08.
  31. M. Villa-Alfageme, S. Hurtado, M.A. Castro, S.E. Mrabet, M.M. Orta, M.C. Pazos, M.D. Alba, Quantification and comparison of the reaction properties of FEBEX and MX-80 clays with saponite: europium immobilisers under subcritical conditions, Appl. Clay Sci. 101 (2014) 10-15. https://doi.org/10.1016/j.clay.2014.08.012
  32. J.B. Fein, The Effects of Ternary Surface Complexes on the Adsorption of Metal Cations and Organic Acids onto Mineral Surfaces, Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar, vol. 7, Geochemical Society, Special Publication, 2002, pp. 365-378.
  33. C.A.J. Appelo, D. Postma, Geochemistry, Groundwater and Pollution, second ed., 2005, p. 252.
  34. D.L. Parkhurst, C.A.J. Appelo, User's Guide to PHREEQC (Version 2) (Equations on Which the Program Is Based), Technical Report, U.S. Department of the Interior, U.S. Geological Survey, 1999. Water-Resources Investigations Report 99-4259.
  35. D. Dixon, A. Man, S. Rimal, J. Stone, G. Siemens, Bentonite Seal Properties in Saline Water, December 2018. NWMO TR-2018-20.