Acknowledgement
This work is supported by the National key research and development program (2018ZX06902015).
References
- International Atomic Energy Agency, Generic Assessment Procedures for Determining Protective Actions during a Reactor Accident, IAEA, Vienna, 1997.
- Y.-H. Cheng, C. Shih, S.-C. Jiang, et al., Development of accident dose consequences simulation software for nuclear emergency response applications, Ann. Nucl. Energy 35 (2008) 917-926. https://doi.org/10.1016/j.anucene.2007.09.001
- P. Tricard, S. Fang, J. Wang, et al., Fast on-line source term estimation of nonconstant releases in nuclear accident scenario using extended kalman filter, in: 2013 21st International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 2013. V003T006A004-V003T006A004.
- G. Wu, J. Tong, Y. Gao, et al., Uncertainty analysis of containment dose rate for core damage assessment in nuclear power plants, Nuclear Engineering & Technology (50) (2018) 673-682.
- U.S. Atomic Energy Commission, Possibilities T. Consequences of Major Accidents in Large Nuclear Power Plants, WASH 740, Atomic Energy Commission, U.S., 1957.
- H.W. Lewis, R.J. Budnitz, W.D. Rowe, et al., Reactor Safety Study: an Assessment Accident Risks in U.S. Commercial Nuclear Power Plants. WASH-1400 (NUREG 57/014), U.S. Nuclear Regulatory Commission, 1975.
- D. Ross, J. Murphy, M. Cunningham, et al., Severe Accident Risks: an Assessment for Five U.S. Nuclear Power Plants. NUREG-1150, U.S. Nuclear Regulatory Commission, 1990.
- T.J. McKenna, J.G. Glitter, Source Term Estimation during Incident Response to Severe Nuclear Power Plant Accidents, United States: Nuclear Regulatory Commission, 1988.
- L. Soffer, S.B. Burson, C.M. Ferrell, et al., Accident Source Terms for Light-Water Nuclear Power Plants, Nuclear Regulatory Commission, United States, 1995.
- M. Vela-Garcia, K. Simola, Evaluation of JRC source term methodology using MAAP5 as a fast-running crisis tool for a BWR4 Mark I reactor, Ann. Nucl. Energy 96 (2016) 446-454. https://doi.org/10.1016/j.anucene.2016.06.040
- R. Gauntt, R. Cole, C. Erickson, et al., MELCOR Computer Code Manuals, Sandia National Laboratories, NUREG/CR, 2005, p. 6119.
- O. Murat, V.H.S. Espinoza, S. Wang, et al., Preliminary validation of ASTEC V2.2.b with the QUENCH-20 BWR bundle experiment[J], Nucl. Eng. Des. 370 (2020) 110931. https://doi.org/10.1016/j.nucengdes.2020.110931
- Shiotsu H, Ishikawa J, Sugiyama T, et al. Influence of chemical speciation in reactor cooling system on pH of suppression pool during BWR severe accident. J. Nucl. Sci. Technol..55, 4. 2018. PP 363-373. https://doi.org/10.1080/00223131.2017.1403381
- F.E.N.G. dun-yi, T.O.N.G. Jie-jua, Q.U. Jing-yuan, Research and application of SESAME system, Sci. Technol. Rev. 24 (2006) 61-64 (in Chinese).
- T. McKenna, J. Trefethen, K. Gant, et al., Response Technical Manual, Nuclear Regulatory Commission, United States, 1996.
- J. Ramsdell, G. Athey, J. Rishel, RASCAL 4: Description of Models and Methods: United States Nuclear Regulatory Commission, Office of Nuclear Security and Incident Response, 2012.
- M. Hutchinson, H. Oh, W.-H. Chen, A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors, Inf. Fusion 36 (2017) 130-148. https://doi.org/10.1016/j.inffus.2016.11.010
- P.E. Bieringer, L.M. Rodriguez, F. Vandenberghe, et al., Automated source term and wind parameter estimation for atmospheric transport and dispersion applications, Atmos. Environ. 122 (2015) 206-219. https://doi.org/10.1016/j.atmosenv.2015.09.016
- Ke Zhao, An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems [Doctor of Philosophy Degree], The University of Tennessee, Knoxville, 2005.
- W. Li, M. Peng, Y.K. Liu, et al., Fault detection, identification and reconstruction of sensors in nuclear power plant with optimized PCA method, Ann. Nucl. Energy 113 (2018) 107-117.
- M.J. Peng, H. Wang, S.S. Chen, et al., An intelligent hybrid methodology of online system-level fault diagnosis for nuclear power plant, Nuclear Engineering and Technology 50 (2018) 396-410. https://doi.org/10.1016/j.net.2017.11.014
- H. Vedam, V. Venkatasubramanian, PCA-SDG based process monitoring and fault diagnosis, Contr. Eng. Pract. 7 (7) (1999) 903-917. https://doi.org/10.1016/S0967-0661(99)00040-4
- J.L. Foret, AP1000 Probabilistic Safety Assessment, Chapter 14, Westinghouse Electric Company LLC, Pittsburgh, PA, United States, 2003.
- P. Webern, G. Medina-Oliva, C. Simon, et al., Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas, Eng. Appl. Artif. Intell. 25 (2012) 671-682. https://doi.org/10.1016/j.engappai.2010.06.002
- N. Cruz-Ramirez, H.G. Acosta-Mesa, H. Carrillo-Calvet, et al., Diagnosis of breast cancer using Bayesian networks: a case study, Comput. Biol. Med. 37 (11) (2007) 1553. https://doi.org/10.1016/j.compbiomed.2007.02.003
- Nima Khakzad, Faisal Khan, Amyotte Paul, Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches, Reliab. Eng. Syst. Saf. 96 (2011) 925-932. https://doi.org/10.1016/j.ress.2011.03.012
- Xiaowei Lu, Research on Evaluation Criterion and Method of Nuclear Power Plant Test [D], Harbin Engineering University, 2016 (in Chinese).
- C. Li, S. Mahadevan, Efficient approximate inference in Bayesian networks with continuous variables, Reliab. Eng. Syst. Saf. 169 (2018) 269-280. https://doi.org/10.1016/j.ress.2017.08.017
- K. Verbert, R. Babuska, B.D. Schutter, Bayesian and DempstereShafer reasoning for knowledge-based fault diagnosiseA comparative study, Eng. Appl. Artif. Intell. 60 (2017) 136-150. https://doi.org/10.1016/j.engappai.2017.01.011
- J.S. Friedman, J. Droulez, P. Bessiere, et al., Approximation enhancement for stochastic Bayesian inference, Int. J. Approx. Reason. 85 (2017) 139-158. https://doi.org/10.1016/j.ijar.2017.03.007
- C. Huang, A. Darwiche, Inference in belief networks: a procedural guide, Int. J. Approx. Reason. 15 (3) (1996) 225-263. https://doi.org/10.1016/S0888-613X(96)00069-2
- G. Wu, J. Tong, L.G. Zhang, et al., Framework for fault diagnosis with multisource sensor nodes in nuclear power plants based on a bayesian inference network, Ann. Nucl. Energy (122) (2018) 297-308.
- S. Garcia-Herrero, M.A. Mariscal, J.M. Gutierrez, A. Toca-Otero, Bayesian network analysis of safety culture and organizational culture in a nuclear power plant, Saf. Sci. 53 (2013) 82-95. https://doi.org/10.1016/j.ssci.2012.09.004
- S. Kwag, A. Gupta, N. Dinh, Probabilistic risk assessment based model validation method using Bayesian network, Reliab. Eng. Syst. Saf. 169 (2018) 380-393. https://doi.org/10.1016/j.ress.2017.09.013
- J. Zhu, Z. Ge, Z. Song, et al., Large-scale plant-wide process modeling and hierarchical monitoring: a distributed Bayesian network approach, J. Process Contr. 65 (2018) 91-106. S0959152417301634. https://doi.org/10.1016/j.jprocont.2017.08.011