DOI QR코드

DOI QR Code

Evaluating thermal stability of rare-earth containing wasteforms at extraordinary nuclear disposal conditions

  • Kim, Miae (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ;
  • Hong, Kyong-Soo (Busan Centre, Korea Basic Science Institute) ;
  • Lee, Jaeyoung (Busan Centre, Korea Basic Science Institute) ;
  • Byeon, Mirang (Busan Centre, Korea Basic Science Institute) ;
  • Jeong, Yesul (Busan Centre, Korea Basic Science Institute) ;
  • Kim, Jong Hwa (Daegu Centre, Korea Basic Science Institute) ;
  • Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology) ;
  • Kim, Hyun Gyu (Busan Centre, Korea Basic Science Institute)
  • Received : 2020.08.31
  • Accepted : 2021.02.24
  • Published : 2021.08.25

Abstract

The thermal stability and crystallization behaviors of La2O3 containing B2O3-CaO-Al2O3 glass waste forms were investigated to evaluate the stability of waste form during emergencies in deep geological disposal. For glasses containing 15% La2O3, LaBO3 phases were observed as major crystals from 780 ℃ and exhibited needlelike structures. Al, Ca, and O were homogeneously distributed throughout the entire specimen, while some portions of B and La were concentrated in some parts. By differential thermal analysis at various heating rates, the activation energy for grain growth and the crystallization rate of LaBO3 were calculated to be 12.6 kJ/mol and 199.5 kJ/mol, respectively. These values are comparable to other waste forms being developed for the same purpose.

Keywords

Acknowledgement

This research was supported by 'NST*-KBSI Postdoctoral Research Fellowship for Young Scientists' at KBSI in Korea. (National Research Council of Science & Technology, Korea Basic Science Institute). This work was supported by Busan Metropolitan City, Korea, Grant No. PO2020063, Korea Basic Science Institute Grant C030321. A portion of research was supported by the National Research Foundation of Korea (NRF), (NRF-2017M2B2B1072374 and NRF-2017M2B2B1072404).

References

  1. M.I. Ojovan, W.E. Lee, S.N. Kalmykov, An Introduction to Nuclear Waste Immobilisation, Elsevier, 2019.
  2. C. Bayliss, K. Langley, Nuclear Decommissioning, Waste Management, and Environmental Site Remediation, Elsevier, 2003.
  3. R.C. Ewing, Nuclear waste forms for actinides, Proc. Natl. Acad. Sci. Unit. States Am. 96 (1999) 3432-3439, https://doi.org/10.1073/pnas.96.7.3432.
  4. P. Loiseau, D. Caurant, N. Baffier, L. Mazerolles, C. Fillet, Glasseceramic nuclear waste forms obtained from SiO2-Al2O3-CaO-ZrO2-TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization, J. Nucl. Mater. 335 (2004) 14-32, https://doi.org/10.1016/j.jnucmat.2004.05.020.
  5. L. Boatner, G. Beall, M. Abraham, C. Finch, P. Huray, M. Rappaz, Monazite and other lanthanide orthophosphates as alternate actinide waste forms, in: Scientific Basis for Nuclear Waste Management, Springer, 1980, pp. 289-296.
  6. M. Kim, J. Heo, Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing, J. Nucl. Mater. 467 (2015) 224-228, https://doi.org/10.1016/j.jnucmat.2015.09.040.
  7. M. Kim, J. Heo, Vitusite glass-ceramics wasteforms for immobilization of lanthanide wastes generated by pyro-processing, Ceram. Int. 41 (2015) 6132-6136, https://doi.org/10.1016/j.ceramint.2015.01.035.
  8. M.A. Kim, J.H. Song, W. Um, N. Hyatt, S.K. Sun, J. Heo, Structure analysis of vitusite glasseceramic waste forms using extended X-ray absorption fine structures, Ceram. Int. 43 (2017) 4687-4691, https://doi.org/10.1016/j.ceramint.2016.12.129.
  9. M. Kim, C.L. Corkhill, N.C. Hyatt, J. Heo, Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides, Sci. Rep. 8 (2018) 1-8, https://doi.org/10.1038/s41598-018-23665-z.
  10. M. Kim, M.G. Ha, W. Um, H.G. Kim, K.S. Hong, Relationship between leaching behavior and glass structure of calcium-aluminoborate waste glasses with various La2O3 contents, J. Nucl. Mater. (2020) 152331, https://doi.org/10.1016/j.jnucmat.2020.152331.
  11. W.M. Ye, Z. Zheng, B. Chen, Y.G. Chen, Y.J. Cui, J. Wang, Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite, Appl. Clay Sci. 101 (2014) 192-198, https://doi.org/10.1016/j.clay.2014.08.002.
  12. C.W. Lee, S.G. Shin, Y.U. Kye, J. Heo, Evaluation of thermal stability in deep geological repository and nuclear criticality safety of spent nuclear fuel vitrified in iron phosphate glass, Ann. Nucl. Energy 136 (2020) 107055, https://doi.org/10.1016/j.anucene.2019.107055.
  13. H. Zhu, F. Wang, Q. Liao, D. Liu, Y. Zhu, Structure features, crystallization kinetics and water resistance of borosilicate glasses doped with CeO2, J. Non-Cryst. Solids 518 (2019) 57-65, https://doi.org/10.1016/j.jnoncrysol.2019.04.044.
  14. F.G. Gibb, High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste? Waste Manag. 19 (1999) 207-211, https://doi.org/10.1016/S0956-053X(99)00050-1.
  15. W. Lee, M. Ojovan, M. Stennett, N. Hyatt, Immobilisation of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram. 105 (2006) 3-12, https://doi.org/10.1179/174367606X81669.
  16. J.S. McCloy, A. Goel, Glass-ceramics for nuclear-waste immobilization, MRS Bull. 42 (2017) 233-240, https://doi.org/10.1557/mrs.2017.8.
  17. H. Chen, J. Marcial, M. Ahmadzadeh, D. Patil, J. McCloy, Partitioning of rare earths in multiphase nuclear waste glass-ceramics, Int. J. Appl. Glass Sci. 11 (4) (2020) 660-675, https://doi.org/10.1111/ijag.15726.
  18. F. Wang, Q. Liao, H. Zhu, Y. Dai, H. Wang, Crystallization kinetics and glass transition kinetics of iron borophosphate glass and CeO2-doped iron borophosphate compounds, J. Alloys Compd. 686 (2016) 641-647, https://doi.org/10.1016/j.jallcom.2016.06.066.
  19. E.A. Ferreira, F.C. Cassanjes, G. Poirier, Crystallization behavior of a barium titanate tellurite glass doped with Eu3+ and Er3+, Opt. Mater. 35 (2013) 1141-1145, https://doi.org/10.1016/j.optmat.2012.11.006.
  20. M. Sasidharan, N. Gunawardhana, H.N. Luitel, T. Yokoi, M. Inoue, S.-i. Yusa, T. Watari, M. Yoshio, T. Tatsumi, K. Nakashima, Novel LaBO3 hollow nanospheres of size 34±2nm templated by polymeric micelles, J. Colloid Interface Sci. 370 (2012) 51-57, https://doi.org/10.1016/j.jcis.2011.12.050.
  21. C.L. Chen, W.C.J. Wei, A. Roosen, Wetting, densification and phase transformation of La2O3-A2O3-B2O3-based glasseceramics, J. Eur. Ceram. Soc. 26 (2006) 59-65, https://doi.org/10.1016/j.jeurceramsoc.2004.10.001.
  22. Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chen, Y.L. Chai, Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique, J. Cryst. Growth 243 (2002) 319-326, https://doi.org/10.1016/S0022-0248(02)01490-2.
  23. R.L. Coble, Sintering crystalline solids. I. Intermediate and final state diffusion models, J. Appl. Phys. 32 (1961) 787-792, https://doi.org/10.1063/1.1736107.
  24. M.A. Janney, H.D. Kimrey, M.A. Schmidt, J.O. Kiggans, Grain growth in microwave-annealed alumina, J. Am. Ceram. Soc. 74 (1991) 1675-1681, https://doi.org/10.1111/j.1151-2916.1991.tb07159.x|.
  25. M. Jarcho, C. Bolen, M. Thomas, J. Bobick, J. Kay, R.H. Doremus, Hydroxylapatite synthesis and characterization in dense polycrystalline form, J. Mater. Sci. 11 (1976) 2027-2035, https://doi.org/10.1007/BF02403350.
  26. R.L. Blaine, H.E. Kissinger, Homer kissinger and the kissinger equation, Thermochim. Acta 540 (2012) 1-6, https://doi.org/10.1016/j.tca.2012.04.008.
  27. H.E. Kissinger, Variation of peck temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand. 57 (1956) 217. https://doi.org/10.6028/jres.057.026
  28. M.M. Imran, Crystallization kinetics, glass transition kinetics, and thermal stability of Se70-xGa30Inx (x= 5, 10, 15, and 20) semiconducting glasses, Phys. B Condens. Matter 406 (2011) 482-487, https://doi.org/10.1016/j.physb.2010.11.019.
  29. I. Shaltout, Crystallization kinetics and structure of (TeO2-TiO2-Fe2O3) glasses, J. Mater. Sci. 35 (2000) 323-329, https://doi.org/10.1023/A:1004749402741.