과제정보
This work was supported by the National Research Foundation of Korea (NRF) grants (2020R1A6A1A03045059 and 2019R1A2C2086647) funded by the Korea government.
참고문헌
- Andersland, O.B. and Ladanyi, B. (2013), An Introduction to Frozen Ground Engineering, Springer Science & Business Media.
- Arat, H. and Arslan, O. (2017), "Optimization of district heating system aided by geothermal heat pump: A novel multistage with multilevel ANN modelling", Appl. Therm. Eng., 111, 608-623. https://doi.org/10.1016/j.applthermaleng.2016.09.150.
- Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020a), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
- Armaghani, D.J., Mirzaei, F., Toghroli, A. and Shariati, A. (2020b), "Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems", Geomech. Eng., 22(5), 397-414. https://doi.org/10.12989/gae.2020.22.5.397.
- Breiman, L. (1996), "Bagging predictors", Mach. Learn., 24(2), 123-140. https://doi.org/10.1007/BF00058655.
- Cai, H., Li, P. and Wu, Z. (2020), "Model test of liquid nitrogen freezing-temperature field of improved plastic freezing pipe", J. Cold Reg. Eng., 34(1), 04020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000204.
- Chen, Y.L., Azzam, R., Fernandez-Steeger, T.M. and Li, L. (2009), "Studies on construction pre-control of a connection aisle between two neighbouring tunnels in Shanghai by means of 3D FEM, neural networks and fuzzy logic", Geotech. Geol. Eng., 27(1), 155.-167. https://doi.org/10.1007/s10706-008-9220-5.
- Erzin, Y. and Cetin, T. (2014), "The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions", Geomech. Eng., 6(1), 1-15. https://doi.org/10.12989/gae.2014.6.1.001.
- Gao, W. and He, T.Y. (2017), "Displacement prediction in geotechnical engineering based on evolutionary neural network", Geomech. Eng., 13(5), 845-860. https://doi.org/10.12989/gae.2017.13.5.845.
- Geron, A. (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media.
- Hu, X., Fang, T., Chen, J., Ren, H. and Guo, W. (2018), "A large-scale physical model test on frozen status in freeze-sealing pipe roof method for tunnel construction", Tunn. Undergr. Sp. Tech., 72, 55-63. http://doi.org/10.1016/j.tust.2017.10.004.
- Jones, J.S. and Brown, R.E. (1979), "Design of tunnel support systems using ground freezing", Eng. Geol., 13(1-4), 375-395. http://doi.org/10.1016/0013-7952(79)90044-9.
- Kullback, S. and Leibler, R.A. (1951), "On information and sufficiency", Ann. Math. Stat., 22(1), 79-86. https://doi.org/10.1214/aoms/1177729694
- Kurylyk, B.L. and Watanabe, K. (2013), "The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils", Adv. Water Resour., 60, 160-177. http://doi.org/10.1016/j.advwatres.2013.07.016.
- Lee, D., Choi, H.J., Pham, K., Lee, I.M. and Choi, H. (2014), "Numerical simulation of artificial-freezing propagation for subsea-tunnel construction: Effect of refrigerant temperature and ground water", Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Seoul, Korea.
- Li, S., Lai, Y., Zhang, M. and Zhang, S. (2006), "Minimum ground pre-freezing time before excavation of Guangzhou subway tunnel", Cold Reg. Sci. Technol., 46(3), 181-191. http://doi.org/10.1016/j.coldregions.2006.09.001.
- Liu, J., Chang, D. and Yu, Q. (2016), "Influence of freeze-thaw cycles on mechanical properties of a silty sand", Eng. Geol., 210, 23-32. http://doi.org/10.1016/j.enggeo.2016.05.019.
- Lu, Y., Liu, S., Weng, L., Wang, L., Li, Z. and Xu, L. (2016), "Fractal analysis of cracking in a clayey soil under freeze-thaw cycles", Eng. Geol., 208, 93-99. http://doi.org/10.1016/j.enggeo.2016.04.023.
- Makasis, N., Narsilio, G.A. and Bidarmaghz, A. (2018), "A machine learning approach to energy pile design", Comput. Geotech., 97, 189-203. https://doi.org/10.1016/j.compgeo.2018.01.011.
- Mandolini, A. and Viggiani, G.M.B. (2017), "Experiences gathered from the construction of Napoli underground", Procedia Eng., 172, 31-41. http://doi.org/10.1016/j.proeng.2017.02.014.
- Marwan, A., Zhou, M.M., Zaki Abdelrehim, M. and Meschke, G. (2016), "Optimization of artificial ground freezing in tunneling in the presence of seepage flow", Comput. Geotech., 75, 112-125. http://doi.org/10.1016/j.compgeo.2016.01.004.
- Perera, K.S., Aung, Z. and Woon, W.L. (2014), "Machine learning techniques for supporting renewable energy generation and integration: A survey BT - data analytics for renewable energy integration", Proceedings of the International Workshop on Data Analytics for Renewable Energy Integration, Nancy, France, September.
- Pimentel, E., Sres, A. and Anagnostou, G. (2012), "Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions", Geotechnique, 62(3), 227-241. http://doi.org/10.1680/geot.9.P.120.
- Ren, J., Vanapalli, S.K., Han, Z., Omenogor, K.O. and Bai, Y. (2019), "The resilient moduli of five Canadian soils under wetting and freeze-thaw conditions and their estimation by using an artificial neural network model", Cold Reg. Sci. Technol., 168. http://doi.org/10.1016/j.coldregions.2019.102894.
- Rouabhi, A., Jahangir, E. and Tounsi, H. (2018), "Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid", Int. J. Heat Mass Transf., 120, 523-533. http://doi.org/10.1016/j.ijheatmasstransfer.2017.12.065.
- Russo, G., Corbo, A., Cavuoto, F. and Autuori, S. (2015), "Artificial Ground Freezing to excavate a tunnel in sandy soil. Measurements and back analysis", Tunn. Undergr. Sp. Tech., 50, 226-238. http://doi.org/10.1016/j.tust.2015.07.008.
- Schmall, P.C. and Maishman, D. (2007), "Ground freezing a proven technology in mine shaft sinking", Mining Engineering New York Tehn Littleton Colorado, Society for Mining Metallurgy and Exploration, 59(6).
- Shalev-Shwartz, S. and Ben-David, S. (2013), Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press.
- Tai, B., Liu, J., Yue, Z., Liu, J., Tian, Y. and Wang, T. (2018), "Effect of sunny-shady slopes and strike on thermal regime of subgrade along a high-speed railway in cold regions, China", Eng. Geol., 232, 182-191. http://doi.org/10.1016/j.enggeo.2017.09.002.
- Tang, L., Du, Y., Liu, L., Jin, L., Yang, L. and Li, G. (2020), "Effect mechanism of unfrozen water on the frozen soil-structure interface during the freezing-thawing process", Geomech. Eng., 22, 245-254. https://doi.org/10.12989/gae.2020.22.3.245.
- Tounsi, H., Rouabhi, A. and Jahangir, E. (2020), "Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid", Comput. Geotech., 119, 103382. http://doi.org/10.1016/j.compgeo.2019.103382.
- Vitel, M., Rouabhi, A., Tijani, M. and Guerin, F. (2016a), "Modeling heat and mass transfer during ground freezing subjected to high seepage velocities", Comput. Geotech., 73, 1-15. http://doi.org/10.1016/j.compgeo.2015.11.014.
- Vitel, M., Rouabhi, A., Tijani, M. and Guerin, F. (2016b), "Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone", Comput. Geotech., 75, 80-92. http://doi.org/10.1016/j.compgeo.2016.01.024.
- Wang, S., Wang, Q., Qi, J. and Liu, F. (2018), "Experimental study on freezing point of saline soft clay after freeze-thaw cycling", Geomech. Eng., 15(4), 997-1004. https://doi.org/10.12989/gae.2018.15.4.997.
- Xu, J., Wang, Z., Ren, J. and Yuan, J. (2018), "Mechanism of shear strength deterioration of loess during freeze-thaw cycling", Geomech. Eng., 14(4), 307-314. https://doi.org/10.12989/gae.2018.14.4.307.
- Yilmaz, F. and Fidan, D. (2018), "Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite", Geomech. Eng., 14(3), 301-306. https://doi.org/10.12989/gae.2018.14.3.301.