DOI QR코드

DOI QR Code

Approaches to measurement system analysis in quality management

품질경영에서 측정시스템분석 방안

  • Baik, Jaiwook (Department of Statistics.Data Science, Korea National Open University)
  • 백재욱 (한국방송통신대학교 통계.데이터과학과)
  • Received : 2021.07.21
  • Accepted : 2021.07.29
  • Published : 2021.07.31

Abstract

There should be no problem in the measurement system for scientific quality management. In this paper, we want to correctly identify the factors that can affect the measurement results during the measurement process and identify what causes them when the measurement results cause problems in terms of location and variation. Variations in the measurement system are largely described in terms of location and dispersion. Location-related attributes are accuracy, stability, and linearity while dispersion-related attributes are reproducibility and repeatability. Analyzing the factors associated with dispersion is an R&R analysis, in which the size of repeatability and reproducibility is represented by a range of differences between multiple measurements and a range of differences between measurements, and 99% of dispersion is determined. Experimental design can also be used for measurement system analysis. Proper analysis is performed only when the factors causing the fluctuation, the worker and the product, are correctly identified as random or fixed factors.

과학적 품질경영을 하기 위해서는 측정시스템에 문제가 없어야 한다. 이에 본 논문에서는 측정과정 중 측정결과에 영향을 미칠 수 있는 요인들이 무엇인지 확인하여 측정결과가 위치와 변동 면에서 문제점이 발생할 때 이를 야기하는 요인을 나열하고자 한다. 측정시스템의 변동은 크게 위치와 산포의 두 가지 속성으로 묘사되는데, 위치와 관련된 속성으로는 정확성, 안정성, 직선성이 있고, 산포와 관련된 속성으로는 재현성과 반복성이 있다. 측정시스템분석에서는 산포와 관련된 요소를 분석하는 것이 R&R분석인데, 여기서 반복성과 재현성의 크기는 여러 차례의 측정치간 차이인 범위와 측정자간 차이인 범위로 나타내며, 이들 범위를 이용한 99%의 산포로 그 크기를 파악한다. 측정시스템분석은 R&R분석이외에 실험계획을 활용하여 측정치의 변동을 유발하는 요인의 변동의 크기를 추정할 수 있다. 이때 변동을 야기하는 요인인 작업자와 제품이 랜덤요인인지 또는 고정요인인지 점검하여 그에 맞게 각 요인의 변동의 크기를 구해야 적절한 분석이 이루어진다.

Keywords

References

  1. 백재욱.이재헌, 품질경영, 한국방송통신대학교출판부, 2020.
  2. D. C. Montgomery, Introduction to Statistical Quality Control (7th ed.), John Wiley and Sons, 2013.
  3. D. Wheeler, EMP III: Evaluating the Measurement Process & Using Imperfect Data, SPC Press, 2006.
  4. Burdick et. al., Design and Analysis of Gauge R&R Studies: Making Decisions with Confidence Intervals in Random and Mixed ANAVA Models, SIAM, 2005.
  5. AIAG Measurement System Analysis (4th ed.), Automotive Industry Action Group, 2010.
  6. L. D. Pop and N. Elod, Improving a Measuring System according to ISO/TS 16949, Procedia Technology, 19, 1023-1030, 2015. https://doi.org/10.1016/j.protcy.2015.02.146
  7. Standard Guide for Measurement Systems Analysis, ASTM E2782, ASTM International, 2017.
  8. Guidelines for the evaluation of dimensional measurement uncertainty, B89.7.3.2, ASME, 2007.
  9. C. W. Shelton, Measurement System Analysis : More Than a Line on a PPAP Submission, Quality Magazine, American Society for Quality, 2021.
  10. Valles et. al., Implementation of six sigma in a manufacturing process: A case study, 16, International Journal of Industrial Engineering, 2009.
  11. Antony et. al., Lean six sigma for public sector organizations: is it a myth or reality?, 34, International Journal of Quality and Reliability Management, 2017.
  12. Minitab 19, Statistical Software Package.
  13. statgraphics 19, Statistical Software Package.
  14. Cano et. al., Measurement System Analysis with R. In: Six Sigma with R. Use R!, 36. Springer, New York, NY, 2012.
  15. Kumar et. al., SMEs Perception towards Adoption of Measurement System Analysis Strategy : A Case Study in Pump Manufacturing Industry, IOP Conference Series : Materials Science and Engineering, 954, 2020.