과제정보
This material is based upon work supported by the National Natural Science Foundation of China under Grant No. 51738010, the National Key R&D Program of China under Grant No. 2016YFC0800200, the Shanghai Science and Technology Committee Rising-Star Program under Grant No. 19QC1400500, and Fundamental Research Funds for the Central Universities.
참고문헌
- Atkinson, J.H. (2000), "Non-linear soil stiffness in routine design", Geotechnique, 50(5), 487-508. https://doi.org/10.1680/geot.2000.50.5.487.
- Benz, T. (2007), "Small-strain stiffness of soils and its numerical consequences", Ph.D. Dissertation, University Stuttgart, Stuttgart, Germany.
- Boone, S. J., Westland, J. and Nusink, R. (1999), "Comparative evaluation of building responses to an adjacent braced excavation", Can. Geotech. J., 36(2), 210-223. https://doi.org/10.1139/t98-100.
- Boscardin, M.D. and Cording, E.J. (1989), "Building response to excavation-induced settlement", J. Geoteh. Eng., 115(1), 1-21. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1).
- Burlon, S., Mroueh, H. and Shahrour, I. (2013), "Influence of diaphragm wall installation on the numerical analysis of deep excavation", Int. J. Numer. Anal. Met. Geomech., 37(11), 1670-1684. https://doi.org/10.1002/nag.2159.
- Burland, J.B., Longworth, T.I. and Moore, J.F.A. (1977), "A study of ground movement and progressive failure caused by a deep excavation in Oxford Clay", Geotechnique, 27(4), 557-591. https://doi.org/10.1680/geot.1977.27.4.557.
- Burland, J.B. (1989), "Ninth Laurits Bjerrum Memorial Lecture: "Small is beautiful"-the stiffness of soils at small strains", Can. Geotech. J., 26(4), 499-516. https://doi.org/10.1139/t89-064.
- Brumund, W.F. and Leonards, G.A. (1973), "Experimental study of static and dynamic friction between sand and typical constuction materials", J. Test. Eval., 1(2), 162-165. https://doi.org/10.1520/JTE10893J.
- Chai, J., Shen, S., Ding, W., Zhu, H. and Carter, J. (2014), "Numerical investigation of the failure of a building in Shanghai, China", Comput. Geotech., 55, 482-493. https://doi.org/10.1016/j.compgeo.2013.10.001.
- Chowdhury, S.S., Deb, K. and Sengupta, A. (2016), "Effect of fines on behavior of braced excavation in sand: Experimental and numerical study", Int. J. Geomech., 16(1), 04015018, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000487.
- Dalgic, K.D., Hendriks, M.A. and Ilki, A. (2018), "Building response to tunnelling-and excavation-induced ground movements: using transfer functions to review the limiting tensile strain method", Struct. Infrastruct. Eng., 14(6), 766-779. https://doi.org/10.1080/15732479.2017.1360364.
- DGJ08-11-2010 (2010), Foundation Design Code, Shanghai Housing and Urban-Rural Construction Management Committee; Shanghai, China.
- Dong, Y., Burd, H. and Houlsby, G. (2016), "Finite-element analysis of a deep excavation case history", Geotechnique, 66(1), 1-15. https://doi.org/10.1680/jgeot.14.P.234.
- Finno, R.J. and Bryson, L.S. (2002), "Response of building adjacent to stiff excavation support system in soft clay", J. Perform. Constr. Fac., 16(1), 10-20. https://doi.org/10.1061/(ASCE)0887-3828(2002)16:1(10).
- Finno, R.J., Lawrence, S.A., Allawh, N.F. and Harahap, I.S. (1991), "Analysis of performance of pile groups adjacent to deep excavation", J. Geotech. Eng., 117(6), 934-955. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(934).
- Goh, A.T.C., Teh, C.I. and Wong, K.S. (1997), "Analysis of piles subjected to embankment induced lateral soil movements", J. Geotech. Geoenviron. Eng., 123(9), 792-801. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(792).
- Goh, A.T.C., Wong, K.S., Teh, C.I. and Wen, D. (2003), "Pile response adjacent to braced excavation", J. Geotech. Geoenviron. Eng., 129(4), 383-386. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(383).
- Harahap, S.E. and Ou, C. (2020), "Finite element analysis of time-dependent behavior in deep excavations", Comput. Geotech., 119, 103300, https://doi.org/10.1016/j.compgeo.2019.103300.
- Houhou, M.N., Emeriault, F. and Belounar, A. (2019), "Three-dimensional numerical back-analysis of a monitored deep excavation retained by strutted diaphragm walls", Tunn. Undergr. Sp. Tech., 83, 153-164. https://doi.org/10.1016/j.tust.2018.09.013.
- Hsiao, E.C., Schuster, M., Juang, C.H. and Kung, G.T. (2012), "Reliability analysis and updating of excavation-induced ground settlement for building serviceability assessment", J. Geotech. Geoenviron. Eng., 134(10), 1448-1458. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1448).
- Hsiung, B.C.B. (2019), "Observations of the ground and structural behaviours induced by a deep excavation in loose sands", Acta Geotechnica, 15, 1577-1593. https://doi.org/10.1007/s11440-019-00864-0.
- Huang, M., Zhang, C. and Li, Z. (2009), "A simplified analysis method for the influence of tunneling on grouped piles", Tunn. Undergr. Sp. Tech., 24(4), 410-422. https://doi.org/10.1016/j.tust.2008.11.005.
- Jardine, R.J., Potts, D.M., Fourie, A.B. and Burland, J.B. (1986), "Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction", Geotechnique, 36(3), 377-396. https://doi.org/10.1680/geot.1986.36.3.377.
- Kim, T. and Finno, R.J. (2012), "Effects of stress path rotation angle on small strain responses", J. Geotech. Geoenviron. Eng., 138(4), 526-534. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000612.
- Korff, M., Mair, R.J. and Van Tol, F.A.F. (2016), "Pile-soil interaction and settlement effects induced by deep excavations", J. Geotech. Geoenviron. Eng., 142(8), 04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434.
- Lee, C.I., Kim, E.K., Park, J.S. and Lee, Y.J. (2018), "Preliminary numerical analysis of controllable prestressed wale system for deep excavation", Geomech. Eng., 15(5), 1061-1070. https://doi.org/10.12989/gae.2018.15.5.1061.
- Lam, S.Y., Ng, C.W.W. and Poulos, H.G. (2013), "Shielding piles from downdrag in consolidating ground", J. Geotech. Geoenviron. Eng., 139(6), 956-968. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000764.
- Liyanapathirana, D.S. and Nishanthan, R. (2016), "Influence of deep excavation induced ground movements on adjacent piles", Tunn. Undergr. Sp. Tech., 52, 168-181. https://doi.org/10.1016/j.tust.2015.11.019.
- Loganathan, N., Poulos, H.G. and Xu, K. (2001), "Ground and pile-group responses due to tunnelling", Soils Found., 41(1), 57-67. https://doi.org/10.3208/sandf.41.57.
- Leung, C.F., Lim, J.K., Shen, R.F. and Chow, Y.K. (2003), "Behavior of pile groups subject to excavation induced soil movement", J. Geotech. Geoenviron. Eng.,129(1), 58-65. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(58).
- Leung, Y.F., Soga, K., Lehane, B.M. and Klar, A. (2010), "Role of linear elasticity in pile group analysis and load test interpretation", J. Geotech. Geoenviron. Eng., 136(12), 1686-1694. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000392.
- Liang, R., Xia, T., Huang, M. and Lin, C. (2017), "Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect", Comput. Geotech., 81, 167-187. https://doi.org/10.1016/j.compgeo.2016.08.017.
- Mansouri, H. and Asghari-Kaljahi, E. (2019), "Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers", Geomech. Eng., 19(4), 315-327. https://doi.org/10.12989/gae.2019.19.4.315.
- Mu, L. and Huang, M. (2016), "Small strain based method for predicting three-dimensional soil displacements induced by braced excavation", Tunn. Undergr. Sp. Tech., 52, 12-22. https://doi.org/10.1016/j.tust.2015.11.001.
- Mu, L., Huang, M. and Finno, R.J. (2012), "Tunnelling effects on lateral behavior of pile rafts in layered soil", Tunn. Undergr. Sp. Tech., 28, 192-201. https://doi.org/10.1016/j.tust.2011.10.010.
- Nam, K., Kim, J., Kwak, D., Rehman, H. and Yoo, H. (2020), "Structure damage estimation due to tunnel excavation based on indoor model test", Geomech. Eng., 21(2), 95-102. https://doi.org/10.12989/gae.2020.21.2.095.
- Ng, C.W.W., Zheng, G., Ni, J. and Zhou, C. (2020), "Use of unsaturated small-strain soil stiffness to the design of wall deflection and ground movement adjacent to deep excavation", Comput. Geotech., 119, 103375. https://doi.org/10.1016/j.compgeo.2019.103375.
- Ou, C., Liao, J. and Cheng, W. (2000), "Building response and ground movements induced by a deep excavation", Geotechnique, 50(3), 209-220. https://doi.org/10.1680/geot.2000.50.3.209.
- Pedro, A.M.G., Zdravkovic, L., Potts, D.M. and e Sousa, J.A. (2017), "Derivation of model parameters for numerical analysis of the Ivens shaft excavation", Eng. Geol., 217, 49-60. https://doi.org/10.1016/j.enggeo.2016.12.005.
- Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, Wiley, New York, U.S.A.
- Poulos H.G. (2001), "Piled raft foundations: Design and applications", Geotechnique, 51(2), 95-113. https://doi.org/10.1680/geot.2001.51.2.95.
- Prakoso, W.A. and Kulhawy, F.H. (2001), "Contribution to piled raft foundation design", J. Geotech. Geoenviron. Eng., 127(1), 17-24. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(17).
- Park K.H. (2004), "Elastic solution for tunneling-induced ground movements in clays", Int. J. Geomech., 4(4), 310-318. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(310).
- Pinto, F. and Whittle, A.J. (2014), "Ground movements due to shallow tunnels in soft ground. I: Analytical solutions", J. Geotech. Geoenviron. Eng., 140(4), 04013040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000948.
- Potyondy, J.G. (1961), "Skin friction between various soils and construction materials", Geotechnique, 11(4), 339-353. https://doi.org/10.1680/geot.1961.11.4.339.
- Reul, O. and Randolph, M.F. (2003), "Piled rafts in overconsolidated clay: comparison of in situ measurements and numerical analyses", Geotechnique, 53(3), 301-315. https://doi.org/10.1680/geot.2003.53.3.301.
- Schuster, M., Kung, G.T.C., Juang, C.H. and Hashash, Y.M. (2009), "Simplified model for evaluating damage potential of buildings adjacent to a braced excavation", J. Geotech. Geoenviron. Eng., 135(12), 1823-1835. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000161.
- Shi, J., Wei, J., Ng, C.W.W. and Lu, H. (2019), "Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand", Comput. Geotech., 116, 103216, https://doi.org/10.1016/j.compgeo.2019.103216.
- Skempton, A.W. and MacDonald, D.H. (1956), "The allowable settlements of buildings", Proc. Inst. Civ. Eng., 5(6), 727-768. https://doi.org/10.1680/ipeds.1956.12202.
- Soomro, M.A., Mangnejo, D.A., Bhanbhro, R., Memon, N.A. and Memon, M.A. (2019), "3D finite element analysis of pile responses to adjacent excavation in soft clay: Effects of different excavation depths systems relative to a floating pile", Tunn. Undergr. Sp. Tech., 86, 138-155. https://doi.org/10.1016/j.tust.2019.01.012.
- Sinha, A. and Hanna, A.M. (2017), "3D numerical model for piled raft foundation", Int. J. Geomech., 17(2), 04016055. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000674.
- Whittle, A.J., Hashash, Y.M. and Whitman, R.V. (1993), "Analysis of deep excavation in Boston", J. Geotech. Eng., 119(1), 69-90. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(69).
- Wroth, C. and Burland, J.B. (1974), "Settlement of buildings and associated damage", Proceedings of the British Geotechnical Society's Conference on Settlement of Structures, Cambridge, U.K., April
- Xu, K. and Poulos, H.G. (2001), "3-D elastic analysis of vertical piles subjected to "passive" loadings", Comput. Geotech., 28(5), 349-375. https://doi.org/10.1016/S0266-352X(00)00024-0.
- Zheng, G., Du, Y., Cheng, X., Diao, Y., Deng, X. and Wang, F. (2017), "Characteristics and prediction methods for tunnel deformations induced by excavations", Geomech. Eng., 12(3), 361-397. https://doi.org/10.12989/gae.2017.12.3.361.