DOI QR코드

DOI QR Code

Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor

비분산적외선 CO2 센서를 위한 DBR기반의 패브리 페로-필터 설계 및 성능 연구

  • Do, Nam Gon (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Junyeop (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Dong Geon (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Kong, Seong Ho (School of Electrical Engineering, Kyungpook National University) ;
  • Jung, Daewoong (Safety System R&D Group, Korea Institute of Industrial Technology)
  • 도남곤 (한국생산기술연구원 안전시스템연구그룹) ;
  • 이준엽 (한국생산기술연구원 안전시스템연구그룹) ;
  • 정동건 (한국생산기술연구원 안전시스템연구그룹) ;
  • 공성호 (경북대학교 전자전기공학부) ;
  • 정대웅 (한국생산기술연구원 안전시스템연구그룹)
  • Received : 2021.07.04
  • Accepted : 2021.07.19
  • Published : 2021.07.31

Abstract

A highly sensitive and selective non-dispersive infrared (NDIR) carbon dioxide gas sensor requires achieving high transmittance and narrow full width at half maximum (FWHM), which depends on the interface of the optical filter for precise measurement of carbon dioxide concentration. This paper presents the design, simulation, and fabrication of a Fabry-Perot filter based on a distributed Bragg reflector (DBR) for a low-cost NDIR carbon dioxide sensor. The Fabry-Perot filter consists of upper and lower DBR pairs, which comprise multilayered stacks of alternating high- and low-index thin films, and a cavity layer for the resonance of incident light. As the number of DBR pairs inside the reflector increases, the FWHM of the transmitted light becomes narrower, but the transmittance of light decreases substantially. Therefore, it is essential to analyze the relationship between the FWHM and transmittance according to the number of DBR pairs. The DBR is made of silicon and silicon dioxide by RF magnetron sputtering on a glass wafer. After the optimal conditions based on simulation results were realized, the DBR exhibited a light transmittance of 38.5% at 4.26 ㎛ and an FWHM of 158 nm. The improved results substantiate the advantages of the low-cost and minimized process compared to expensive commercial filters.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의 지원을 받아 수행된 연구임(2020-DD-UP-0348). 본 논문은 한국생산기술연구원 기관주요사업의 지원으로 수행한 연구입니다.

References

  1. A. F. Perez-Cadenas, C. H. Ros, S. Morales-Torres, M. Perez-Cadenas, P. J. Kooyman, C. Moreno-Castilla, and F. Kapteijn, "Metal-doped carbon xerogels for the electro-catalytic conversion of CO2 to hydrocarbons", Carbon N. Y., Vol. 56, pp. 324-331, 2013. https://doi.org/10.1016/j.carbon.2013.01.019
  2. B. Liao, Q. Wei, K. Wang, and Y. Liu, "Study on CuOBaTiO3 semiconductor CO2 sensor", Sens. Actuator, Vol. 80, pp. 208-214, 2001. https://doi.org/10.1016/S0925-4005(01)00892-9
  3. M. Febrina, E. Satria, M. Djamal, W. Srigutomo, and M. Liess, "Development of a simple CO2 sensor based on the thermal conductivity detection by a thermopile", Meas. J. Int. Meas. Confed., Vol. 133, pp. 139-144, 2019.
  4. T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction", Sens. Actuator, B-Chem., Vol. 231, pp. 529-538, 2016. https://doi.org/10.1016/j.snb.2016.03.040
  5. R. Bogue, "Detecting gases with light: A review of optical gas sensor technologies", Sens. Rev., Vol. 35, No. 2, pp. 133-140, 2015. https://doi.org/10.1108/SR-09-2014-696
  6. L. Kocsis, P. Herman, and A. Eke, "The modified BeerLambert law revisited", Phys. Med. Biol., Vol. 51, No. 5, p. N91, 2006. https://doi.org/10.1088/0031-9155/51/5/N02
  7. L. Fleming, D. Gibson, S. Song, C. Li, and S. Reid, "Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings", Surf. Coatings Technol., vol. 336, pp. 9-16, 2018. https://doi.org/10.1016/j.surfcoat.2017.09.033
  8. R. Frodl and T. Tille. "A High-Precision NDIR CO2 gas sensor for automotive applications", IEEE Sens. J., Vol. 6, No. 6, pp. 1697-1705, 2006. https://doi.org/10.1109/JSEN.2006.884440
  9. A. Sklorz, A. Schafer, and W. Lang, "Merging ethylene NDIR gas sensors with preconcentrator-devices for sensitivity enhancement", Sensors Actuators, B Chem., Vol. 170, pp. 21-27, 2012. https://doi.org/10.1016/j.snb.2010.11.049
  10. L. B. Mendes, N. W. M. Ogink, N. Edouard, H. J. C. van Dooren, I. D. F. F. Tinoco, and J. Mosquera, "NDIR gas sensor for spatial monitoring of carbon dioxide concentrations in naturally ventilated livestock buildings", Sens., Vol. 15, No. 5, pp. 11239-11257, 2015. https://doi.org/10.3390/s150511239
  11. A. Schmidt-Bleker, J. Winter, S. Iseni, M. Dunnbier, K. D. Weltmann, and S. Reuter, "Reactive species output of a plasma jet with a shielding gas device - Combination of FTIR absorption spectroscopy and gas phase modelling", J. Phys. D. Appl. Phys., Vol. 47, No. 14, p. 145201, 2014. https://doi.org/10.1088/0022-3727/47/14/145201
  12. M. Cho, J. H. Seo, D. Zhao, J. Lee, K. Xiong, X. Yin, and Z. Ma, "Amorphous Si/SiO2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes", J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., Vol. 34, No. 4, p. 040601, 2016.
  13. M. R. K. Kelly-Gorham, B. M. Devetter, C. S. Brauer, B. D. Cannon, S. D. Burton, M, Bliss, and T. L. Myers, "Complex refractive index measurements for BaF2 and CaF2 via single-angle infrared reflectance spectroscopy", Opt. Mater., Vol. 72, pp. 743-748, 2017. https://doi.org/10.1016/j.optmat.2017.06.052
  14. T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with onchip dielectric mirrors and temperature stabilization", Appl. Phys. B Lasers Opt., Vol. 90, No. 3, pp. 401-405, 2008. https://doi.org/10.1007/s00340-007-2879-0
  15. N. G. Do, J. Lee, D. G. Jung, S. H. Kong, and D. Jung, "Si/SiO2 Multilayer-based Fabry-Perot Filter for 4.26 ㎛ Filtering in Carbon Dioxide Detection", J. Sens. Sci. Technol., No. 30, No. 1, pp. 56-60, 2021. https://doi.org/10.46670/JSST.2021.30.1.56