Acknowledgement
This work was supported by the Korean NRF Grant 2019M3E5D3073568 (to J.Y.A.) and a Korea University Grant.
References
- Aguirre, A.J., Nowak, J.A., Camarda, N.D., Moffitt, R.A., Ghazani, A.A., Hazar-Rethinam, M., Raghavan, S., Kim, J., Brais, L.K., Ragon, D., et al. (2018). Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discov. 8, 1096-1111. https://doi.org/10.1158/2159-8290.CD-18-0275
- Amit, I., Citri, A., Shay, T., Lu, Y., Katz, M., Zhang, F., Tarcic, G., Siwak, D., Lahad, J., Jacob-Hirsch, J., et al. (2007). A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503-512.
- Basu, A., Bodycombe, N.E., Cheah, J.H., Price, E.V., Liu, K., Schaefer, G.I., Ebright, R.Y., Stewart, M.L., Ito, D., Wang, S., et al. (2013). An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151-1161. https://doi.org/10.1016/j.cell.2013.08.003
- Benson, J.D., Chen, Y.N., Cornell-Kennon, S.A., Dorsch, M., Kim, S., Leszczyniecka, M., Sellers, W.R., and Lengauer, C. (2006). Validating cancer drug targets. Nature 441, 451-456. https://doi.org/10.1038/nature04873
- Berns, K. and Bernards, R. (2012). Understanding resistance to targeted cancer drugs through loss of function genetic screens. Drug Resist. Updat. 15, 268-275. https://doi.org/10.1016/j.drup.2012.10.002
- Bodenmiller, B., Zunder, E.R., Finck, R., Chen, T.J., Savig, E.S., Bruggner, R.V., Simonds, E.F., Bendall, S.C., Sachs, K., Krutzik, P.O., et al. (2012). Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858-867. https://doi.org/10.1038/nbt.2317
- Bordbar, A., Mo, M.L., Nakayasu, E.S., Schrimpe-Rutledge, A.C., Kim, Y.M., Metz, T.O., Jones, M.B., Frank, B.C., Smith, R.D., Peterson, S.N., et al. (2012). Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. 8, 558. https://doi.org/10.1038/msb.2012.21
- Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K.W., Vogelstein, B., and Nowak, M.A. (2010). Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. U. S. A. 107, 18545-18550. https://doi.org/10.1073/pnas.1010978107
- Cancer Genome Atlas Network (2012a). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. https://doi.org/10.1038/nature11252
- Cancer Genome Atlas Network (2012b). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70. https://doi.org/10.1038/nature11412
- Cancer Genome Atlas Research Network (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. https://doi.org/10.1038/nature10166
- Cancer Genome Atlas Research Network (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43-49. https://doi.org/10.1038/nature12222
- Cancer Genome Atlas Research Network (2014). Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209. https://doi.org/10.1038/nature13480
- Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., et al. (2013a). Integrated genomic characterization of endometrial carcinoma. Nature 497, 67-73. https://doi.org/10.1038/nature12113
- Cancer Genome Atlas Research Network, Ley, T.J., Miller, C., Ding, L., Raphael, B.J., Mungall, A.J., Robertson, A., Hoadley, K., Triche, T.J., Jr., Laird, P.W., et al. (2013b). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074. https://doi.org/10.1056/NEJMoa1301689
- Cancer Genome Atlas Research Network (2017). Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185-203.e13. https://doi.org/10.1016/j.ccell.2017.07.007
- Carro, M.S., Lim, W.K., Alvarez, M.J., Bollo, R.J., Zhao, X., Snyder, E.Y., Sulman, E.P., Anne, S.L., Doetsch, F., Colman, H., et al. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318-325. https://doi.org/10.1038/nature08712
- Cavalli, F.M.G., Remke, M., Rampasek, L., Peacock, J., Shih, D.J.H., Luu, B., Garzia, L., Torchia, J., Nor, C., Morrissy, A.S., et al. (2017). Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31, 737-754.e6. https://doi.org/10.1016/j.ccell.2017.05.005
- Chauvel, C., Novoloaca, A., Veyre, P., Reynier, F., and Becker, J. (2020). Evaluation of integrative clustering methods for the analysis of multiomics data. Brief. Bioinform. 21, 541-552. https://doi.org/10.1093/bib/bbz015
- Chen, Y., McGee, J., Chen, X., Doman, T.N., Gong, X., Zhang, Y., Hamm, N., Ma, X., Higgs, R.E., Bhagwat, S.V., et al. (2014). Identification of druggable cancer driver genes amplified across TCGA datasets. PLoS One 9, e98293. https://doi.org/10.1371/journal.pone.0098293
- Chen, Y.J., Roumeliotis, T.I., Chang, Y.H., Chen, C.T., Han, C.L., Lin, M.H., Chen, H.W., Chang, G.C., Chang, Y.L., Wu, C.T., et al. (2020). Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 182, 226-244.e17. https://doi.org/10.1016/j.cell.2020.06.012
- Chin, K., DeVries, S., Fridlyand, J., Spellman, P.T., Roydasgupta, R., Kuo, W.L., Lapuk, A., Neve, R.M., Qian, Z., Ryder, T., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529-541. https://doi.org/10.1016/j.ccr.2006.10.009
- Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E.S., and Getz, G. (2013). Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213-219. https://doi.org/10.1038/nbt.2514
- Csibi, A., Fendt, S.M., Li, C., Poulogiannis, G., Choo, A.Y., Chapski, D.J., Jeong, S.M., Dempsey, J.M., Parkhitko, A., Morrison, T., et al. (2013). The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854. https://doi.org/10.1016/j.cell.2013.04.023
- Cui, H., Kong, H., Peng, F., Wang, C., Zhang, D., Tian, J., and Zhang, L. (2020). Inferences of individual drug response-related long non-coding RNAs based on integrating multi-omics data in breast cancer. Mol. Ther. Nucleic Acids 20, 128-139. https://doi.org/10.1016/j.omtn.2020.01.038
- Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346-352. https://doi.org/10.1038/nature10983
- Dekker, L.J.M., Kannegieter, N.M., Haerkens, F., Toth, E., Kros, J.M., Steenhoff Hov, D.A., Fillebeen, J., Verschuren, L., Leenstra, S., Ressa, A., et al. (2020). Multiomics profiling of paired primary and recurrent glioblastoma patient tissues. Neurooncol. Adv. 2, vdaa083.
- Gentles, A.J. and Gallahan, D. (2011). Systems biology: confronting the complexity of cancer. Cancer Res. 71, 5961-5964. https://doi.org/10.1158/0008-5472.CAN-11-1569
- Gillette, M.A., Satpathy, S., Cao, S., Dhanasekaran, S.M., Vasaikar, S.V., Krug, K., Petralia, F., Li, Y., Liang, W.W., Reva, B., et al. (2020). Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200-225.e35. https://doi.org/10.1016/j.cell.2020.06.013
- Greenbaum, D., Colangelo, C., Williams, K., and Gerstein, M. (2003). Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117. https://doi.org/10.1186/gb-2003-4-9-117
- Greenman, C., Stephens, P., Smith, R., Dalgliesh, G.L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446, 153-158. https://doi.org/10.1038/nature05610
- Hegde, P.S., White, I.R., and Debouck, C. (2003). Interplay of transcriptomics and proteomics. Curr. Opin. Biotechnol. 14, 647-651. https://doi.org/10.1016/j.copbio.2003.10.006
- Hennessy, B.T., Lu, Y., Gonzalez-Angulo, A.M., Carey, M.S., Myhre, S., Ju, Z., Davies, M.A., Liu, W., Coombes, K., Meric-Bernstam, F., et al. (2010). A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin. Proteomics 6, 129-151. https://doi.org/10.1007/s12014-010-9055-y
- Hill, S.M., Lu, Y., Molina, J., Heiser, L.M., Spellman, P.T., Speed, T.P., Gray, J.W., Mills, G.B., and Mukherjee, S. (2012). Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28, 2804-2810. https://doi.org/10.1093/bioinformatics/bts514
- Hong, S., Choi, S., Kim, R., and Koh, J. (2020). Mechanisms of macromolecular interactions mediated by protein intrinsic disorder. Mol. Cells 43, 899-908. https://doi.org/10.14348/molcells.2020.0186
- Huang, S.S., Clarke, D.C., Gosline, S.J., Labadorf, A., Chouinard, C.R., Gordon, W., Lauffenburger, D.A., and Fraenkel, E. (2013). Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLoS Comput. Biol. 9, e1002887. https://doi.org/10.1371/journal.pcbi.1002887
- Huang, Z., Zhan, X., Xiang, S., Johnson, T.S., Helm, B., Yu, C.Y., Zhang, J., Salama, P., Rizkalla, M., Han, Z., et al. (2019). SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on breast cancer. Front. Genet. 10, 166. https://doi.org/10.3389/fgene.2019.00166
- Iadevaia, S., Lu, Y., Morales, F.C., Mills, G.B., and Ram, P.T. (2010). Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 70, 6704-6714. https://doi.org/10.1158/0008-5472.CAN-10-0460
- Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A.L., Kafri, R., Kirschner, M.W., Clish, C.B., and Mootha, V.K. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040-1044. https://doi.org/10.1126/science.1218595
- Kirk, P., Griffin, J.E., Savage, R.S., Ghahramani, Z., and Wild, D.L. (2012). Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28, 3290-3297. https://doi.org/10.1093/bioinformatics/bts595
- Koh, H.W.L., Fermin, D., Vogel, C., Choi, K.P., Ewing, R.M., and Choi, H. (2019). iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. NPJ Syst. Biol. Appl. 5, 22. https://doi.org/10.1038/s41540-019-0099-y
- Komurov, K., Tseng, J.T., Muller, M., Seviour, E.G., Moss, T.J., Yang, L., Nagrath, D., and Ram, P.T. (2012). The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol. Syst. Biol. 8, 596. https://doi.org/10.1038/msb.2012.25
- Krug, K., Jaehnig, E.J., Satpathy, S., Blumenberg, L., Karpova, A., Anurag, M., Miles, G., Mertins, P., Geffen, Y., Tang, L.C., et al. (2020). Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183, 1436-1456.e31. https://doi.org/10.1016/j.cell.2020.10.036
- Lai, Z., Tsugawa, H., Wohlgemuth, G., Mehta, S., Mueller, M., Zheng, Y., Ogiwara, A., Meissen, J., Showalter, M., Takeuchi, K., et al. (2018). Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 15, 53-56. https://doi.org/10.1038/nmeth.4512
- Langfelder, P. and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559. https://doi.org/10.1186/1471-2105-9-559
- Lee, S., Kim, J., and Park, J.E. (2021). Single-cell toolkits opening a new era for cell engineering. Mol. Cells 44, 127-135. https://doi.org/10.14348/molcells.2021.0002
- Li, T., Kung, H.J., Mack, P.C., and Gandara, D.R. (2013). Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J. Clin. Oncol. 31, 1039-1049. https://doi.org/10.1200/JCO.2012.45.3753
- Lindsay, M.A. (2003). Target discovery. Nat. Rev. Drug Discov. 2, 831-838. https://doi.org/10.1038/nrd1202
- Lock, E.F. and Dunson, D.B. (2013). Bayesian consensus clustering. Bioinformatics 29, 2610-2616. https://doi.org/10.1093/bioinformatics/btt425
- Marx, V. (2019). A dream of single-cell proteomics. Nat. Methods 16, 809-812. https://doi.org/10.1038/s41592-019-0540-6
- Mertins, P., Mani, D.R., Ruggles, K.V., Gillette, M.A., Clauser, K.R., Wang, P., Wang, X., Qiao, J.W., Cao, S., Petralia, F., et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62. https://doi.org/10.1038/nature18003
- Mo, Q., Wang, S., Seshan, V.E., Olshen, A.B., Schultz, N., Sander, C., Powers, R.S., Ladanyi, M., and Shen, R. (2013). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. U. S. A. 110, 4245-4250. https://doi.org/10.1073/pnas.1208949110
- Mun, D.G., Bhin, J., Kim, S., Kim, H., Jung, J.H., Jung, Y., Jang, Y.E., Park, J.M., Kim, H., Jung, Y., et al. (2019). Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell 35, 111-124.e10. https://doi.org/10.1016/j.ccell.2018.12.003
- Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515-527. https://doi.org/10.1016/j.ccr.2006.10.008
- Nguyen, H., Shrestha, S., Draghici, S., and Nguyen, T. (2019). PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics 35, 2843-2846. https://doi.org/10.1093/bioinformatics/bty1049
- Nguyen, N.D. and Wang, D. (2020). Multiview learning for understanding functional multiomics. PLoS Comput. Biol. 16, e1007677. https://doi.org/10.1371/journal.pcbi.1007677
- Paananen, J. and Fortino, V. (2020). An omics perspective on drug target discovery platforms. Brief. Bioinform. 21, 1937-1953. https://doi.org/10.1093/bib/bbz122
- Palmer, A., Phapale, P., Chernyavsky, I., Lavigne, R., Fay, D., Tarasov, A., Kovalev, V., Fuchser, J., Nikolenko, S., Pineau, C., et al. (2017). FDRcontrolled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14, 57-60. https://doi.org/10.1038/nmeth.4072
- Pascal, J., Bearer, E.L., Wang, Z., Koay, E.J., Curley, S.A., and Cristini, V. (2013). Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements. Proc. Natl. Acad. Sci. U. S. A. 110, 14266-14271. https://doi.org/10.1073/pnas.1300619110
- Pauli, C., Hopkins, B.D., Prandi, D., Shaw, R., Fedrizzi, T., Sboner, A., Sailer, V., Augello, M., Puca, L., Rosati, R., et al. (2017). Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462-477. https://doi.org/10.1158/2159-8290.CD-16-1154
- Pritchard, J.R., Bruno, P.M., Gilbert, L.A., Capron, K.L., Lauffenburger, D.A., and Hemann, M.T. (2013). Defining principles of combination drug mechanisms of action. Proc. Natl. Acad. Sci. U. S. A. 110, E170-E179.
- Qiu, P., Simonds, E.F., Bendall, S.C., Gibbs, K.D., Jr., Bruggner, R.V., Linderman, M.D., Sachs, K., Nolan, G.P., and Plevritis, S.K. (2011). Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886-891. https://doi.org/10.1038/nbt.1991
- Ramaswami, G., Won, H., Gandal, M.J., Haney, J., Wang, J.C., Wong, C.C.Y., Sun, W., Prabhakar, S., Mill, J., and Geschwind, D.H. (2020). Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nat. Commun. 11, 4873. https://doi.org/10.1038/s41467-020-18526-1
- Rappoport, N., Safra, R., and Shamir, R. (2020). MONET: multi-omic module discovery by omic selection. PLoS Comput. Biol. 16, e1008182. https://doi.org/10.1371/journal.pcbi.1008182
- Rappoport, N. and Shamir, R. (2019). NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics 35, 3348-3356. https://doi.org/10.1093/bioinformatics/btz058
- Schubert, O.T., Rost, H.L., Collins, B.C., Rosenberger, G., and Aebersold, R. (2017). Quantitative proteomics: challenges and opportunities in basic and applied research. Nat. Protoc. 12, 1289-1294. https://doi.org/10.1038/nprot.2017.040
- Shen, R., Olshen, A.B., and Ladanyi, M. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906-2912. https://doi.org/10.1093/bioinformatics/btp543
- Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell data. Cell 177, 1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031
- Stuart, T. and Satija, R. (2019). Integrative single-cell analysis. Nat. Rev. Genet. 20, 257-272. https://doi.org/10.1038/s41576-019-0093-7
- Sumazin, P., Yang, X., Chiu, H.S., Chung, W.J., Iyer, A., Llobet-Navas, D., Rajbhandari, P., Bansal, M., Guarnieri, P., Silva, J., et al. (2011). An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370-381. https://doi.org/10.1016/j.cell.2011.09.041
- Swanson, K.R., Rockne, R.C., Claridge, J., Chaplain, M.A., Alvord, E.C., Jr., and Anderson, A.R. (2011). Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 71, 7366-7375. https://doi.org/10.1158/0008-5472.CAN-11-1399
- Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607-D613. https://doi.org/10.1093/nar/gky1131
- Tentner, A.R., Lee, M.J., Ostheimer, G.J., Samson, L.D., Lauffenburger, D.A., and Yaffe, M.B. (2012). Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol. Syst. Biol. 8, 568. https://doi.org/10.1038/msb.2012.1
- Teves, J.M. and Won, K.J. (2020). Mapping cellular coordinates through advances in spatial transcriptomics technology. Mol. Cells 43, 591-599. https://doi.org/10.14348/molcells.2020.0020
- Tyers, M. and Mann, M. (2003). From genomics to proteomics. Nature 422, 193-197. https://doi.org/10.1038/nature01510
- Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., Zhu, J., Haussler, D., and Stuart, J.M. (2010). Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237-i245. https://doi.org/10.1093/bioinformatics/btq182
- Vidova, V. and Spacil, Z. (2017). A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal. Chim. Acta 964, 7-23. https://doi.org/10.1016/j.aca.2017.01.059
- Wang, B., Mezlini, A.M., Demir, F., Fiume, M., Tu, Z., Brudno, M., HaibeKains, B., and Goldenberg, A. (2014). Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333-337. https://doi.org/10.1038/nmeth.2810
- Whitehurst, A.W., Bodemann, B.O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., Minna, J.D., Michnoff, C., Hao, W., Roth, M.G., et al. (2007). Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815-819. https://doi.org/10.1038/nature05697
- Witten, D.M. and Tibshirani, R.J. (2009). Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8, Article28.
- Wu, D., Wang, D., Zhang, M.Q., and Gu, J. (2015). Fast dimension reduction and integrative clustering of multi-omics data using lowrank approximation: application to cancer molecular classification. BMC Genomics 16, 1022. https://doi.org/10.1186/s12864-015-2223-8
- Yang, Z. and Michailidis, G. (2016). A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 32, 1-8. https://doi.org/10.1093/bioinformatics/btv544
- Yuan, Y., Savage, R.S., and Markowetz, F. (2011). Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput. Biol. 7, e1002227. https://doi.org/10.1371/journal.pcbi.1002227
- Zhang, H., Liu, T., Zhang, Z., Payne, S.H., Zhang, B., McDermott, J.E., Zhou, J.Y., Petyuk, V.A., Chen, L., Ray, D., et al. (2016). Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166, 755-765. https://doi.org/10.1016/j.cell.2016.05.069