참고문헌
- ASCE 7-10 (2010), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston VA.
- Asher, J.W., Hoskere, S.N., Ewing, R.D., Mayes, R.L., Button, M. R. and Van Volkinburg, D.R. (1997), "Performance of seismically isolated structures in the 1994 Northridge and 1995 Kobe earthquakes", Build. Last, 1128-1132.
- Baker, W.E. (1973), Explosions in Air, University of Texas press, Austin TX.
- Baratta, A. and Corbi, I. (2004), "Optimal design of base-isolators in multi-storey buildings", Comput. Struct., 82(23-26), 2199-2209. https://doi.org/10.1016/j.compstruc.2004.03.061.
- Brode, H.L. (1955), "Numerical solutions of spherical blast waves", J. Appl. Phys., 26(6), 766-775. https://doi.org/10.1063/1.1722085.
- BUCKLE, I.G. (1993), "Stability of elastomeric seismic isolation systems", Proc. of Seminar on Seismic Isolation, Passive Energy Dissipation and Control, 1993,
- Bulson, P.S. (2002), Explosive Loading of Engineering Structures, CRC Press, London.
- Cao, L., Laflamme, S., Taylor, D. and Ricles, J. (2016), "Simulations of a variable friction device for multihazard mitigation", J. Struct. Eng., 142(12), H4016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001580.
- Chen, W. and Hao, H. (2013), "Numerical study of blast-resistant sandwich panels with rotational friction dampers", Int. J. Struct. Stab. Dyn., 13(06), 1350014. https://doi.org/10.1142/S0219455413500144.
- Choun, Y.S., Park, J. and Choi, I.K. (2014), "Effects of mechanical property variability in lead rubber bearings on the response of seismic isolation system for different ground motions", Nucl. Eng. Technol., 46(5), 605-618. https://doi.org/10.5516/NET.09.2014.718.
- Clemente, P., Bongiovanni, G., Buffarini, G., Saitta, F., Castellano, M.G. and Scafati, F. (2019), "Effectiveness of HDRB isolation systems under low energy earthquakes", Soil Dyn. Earthq. Eng., 118, 207-220. https://doi.org/10.1016/j.soildyn.2018.12.018.
- Coffield, A. and Adeli, H. (2014), "An investigation of the effectiveness of the framing systems in steel structures subjected to blast loading", J. Civ. Eng. Manag., 20(6), 767-777. https://doi.org/10.3846/13923730.2014.986667.
- Coffield, A. and Adeli, H. (2016), "Irregular steel building structures subjected to blast loading", J. Civ. Eng. Manag., 22(1), 17-25. https://doi.org/10.3846/13923730.2015.1073172.
- Constantinou, M., Whittaker, A., Fenz, D. and Apostolakis, G. (2007), Seismic Isolation of Bridges, University at Buffalo, New York.
- Constantinou, M.C., Whittaker, A., Kalpakidis, Y., Fenz, D. and Warn, G.P. (2006), Performance of Seismic Isolation Hardware under Service and Seismic Loading, University at Buffalo, New York.
- Dadkhah, H. and Mohebbi, M. (2019), "Performance assessment of an earthquake-based optimally designed fluid viscous damper under blast loading", Advan. Struct. Eng., 22(14), 3011-3025. https://doi.org/10.1177%2F1369433219855905. https://doi.org/10.1177%2F1369433219855905
- Derham, C. (1980), "The design of seismic isolation bearings", Century 2-Emerging Technology Conferences, San Francisco,
- De Luca, A. and Guidi, L.G. (2020), "Base isolation issues in Italy: Integrated architectural and structural designs", Soil Dyn. Earthq. Eng., 130, 105912. https://doi.org/10.1016/j.soildyn.2019.105912.
- El-Arab, I.M.E. (2016), "Strengthening of existing security buildings against vehicle bomb using fluid viscous dampers, in Egypt", J. Civ. Eng. Constr. Technol., 7(5), 37-47. https://doi.org/10.5897/JCECT2016.0413.
- Elkady, A. and Lignos, D.G. (2015), "Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames", Earthq. Eng. Struct. Dyn., 44(8), 1289-1307. https://doi.org/10.1002/eqe.2519.
- Erdik, M., U lker, O ., Sadan, B. and Tuzun, C. (2018), "Seismic isolation code developments and significant applications in Turkey", Soil Dyn. Earthq. Eng., 115, 413-437. https://doi.org/10.1016/j.soildyn.2018.09.009.
- EN 15129 (2009), Anti-Seismic Devices, Comite Europeen de Normalisation, Brussels.
- FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, American Society of Civil Engineers, Washington DC.
- FEMA P695 (2009), Quantification of Building Seismic Performance Factors, American Society of Civil Engineers, Washington DC.
- Gent, A. (1990), "Cavitation in rubber: a cautionary tale", Rubber Chemistry Technol., 63(3), 49-53. https://doi.org/10.5254/1.3538266.
- Gent, A.N. (1964), "Elastic stability of rubber compression springs", J. Mech. Eng. Sci., 6(4), 318-326. https://doi.org/10.1243%2FJMES_JOUR_1964_006_046_02. https://doi.org/10.1243%2FJMES_JOUR_1964_006_046_02
- Haringx, J.A. (1948), "On highly compressible helical springs and rubber rods and their application for vibration-free mountings, I", Philips Res. Reports, 3, 401-449.
- Haringx, J.A. (1949), "On highly compressible helical springs and rubber rods, and their application for vibration-free mountings", Phillips Res. Report, 4, 49-80.
- Hassan, A.L. and Billah, A.M. (2020), "Influence of ground motion duration and isolation bearings on the seismic response of base-isolated bridges", Eng. Struct., 222, 111129. https://doi.org/10.1016/j.engstruct.2020.111129.
- Hedayati Dezfuli, F. and Alam, M.S. (2018), "Smart lead rubber bearings equipped with ferrous shape memory alloy wires for seismically isolating highway bridges", J. Earthq. Eng., 22(6), 1042-1067. http://dx.doi.org/10.1080/13632469.2016.1269692.
- Henrych, J. and Major, R. (1979), The Dynamics of Explosion and its Use, Elsevier Scientific, Amsterdam.
- Iemura, H., Taghikhany, T. and Jain, S.K. (2007), "Optimum design of resilient sliding isolation system for seismic protection of equipments", Bull. Earthq. Eng., 5(1), 85-103. https://doi.org/10.1007/s10518-006-9010-5.
- Iwabe, N., Takayama, M., Kani, N. and Wada, A. (2000), "Experimental Study on the Effect of Tension for Rubber Bearings", 12th World Conference on Earthquake Engineering (WCEE), Auckland, New Zealand, Jan,
- Jangid, R. (2005), "Optimum friction pendulum system for nearfault motions", Eng. Struct., 27(3), 349-359. https://doi.org/10.1016/j.engstruct.2004.09.013.
- Jangid, R. (2007), "Optimum lead-rubber isolation bearings for near-fault motions", Eng. Struct., 29(10), 2503-2513. https://doi.org/10.1016/j.engstruct.2006.12.010.
- Jangid, R. (2010), "Stochastic response of building frames isolated by lead-rubber bearings", Struct. Control Health Monit., 17(1), 1-22. https://doi.org/10.1002/stc.266.
- Joghataie, A. and Mohebbi, M. (2008) , "Vibration controller design for confined masonry walls by distributed genetic algorithms", J. Struc. Eng., 134(2): 300-309. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(300).
- Kangda, M.Z. and Bakre, S. (2018), "The effect of LRB parameters on structural responses for blast and seismic loads", Arab. J. Sci. Eng., 43(4), 1761-1776. https://doi.org/10.1007/s13369-017-2732-7.
- Kangda, M.Z. and Bakre, S. (2019), "Positive-Phase Blast Effects on Base-Isolated Structures", Arab. J. Sci. Eng., 44(5), 4971- 4992. https://doi.org/10.1007/s13369-018-3667-3.
- Kangda, M.Z. and Bakre, S. (2020), "Performance evaluation of moment-resisting steel frame buildings under seismic and blastinduced vibrations", J. Vib. Eng. Technol., 8(1), 1-26. https://doi.org/10.1007/s42417-018-0027-2.
- Karimi, M.R.B. and Genes, M.C. (2019), "Probabilistic Behavior Assessment of Base-Isolated Buildings and Base Isolation Systems Subjected to Various Earthquakes with Different Components", Arab. J. Sci. Eng., 44(10), 8265-8288. https://doi.org/10.1007/s13369-019-03867-x.
- Kelly, J.M. (1986), "A seismic base isolation: review and bibliography", Soil Dyn. Earthq. Eng., 5(4), 202-216. https://doi.org/10.1016/0267-7261(86)90006-0.
- Kelly, J.M. (1997), Earthquake-resistant design with rubber, Springer, New York.
- Kelly, J.M. and Konstantinidis, D. (2011), Mechanics of rubber bearings for seismic and vibration isolation, John Wiley & Sons, Chichester.
- Khan, S., Saha, S.K., Matsagar, V.A. and Hoffmeister, B. (2017), "Fragility of steel frame buildings under blast load", J. Perform. Constr. Fac., 31(4), 04017019. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001016.
- Kilar, V. and Koren, D. (2009), "Seismic behaviour of asymmetric base isolated structures with various distributions of isolators", Eng. Struct., 31(4), 910-921. https://doi.org/10.1016/j.engstruct.2008.12.006.
- Kinney, G.F. and Graham, K.J. (2013), Explosive shocks in air, Springer Science & Business Media, New York.
- Kumar, M., Whittaker, A.S. and Constantinou, M.C. (2014), "An advanced numerical model of elastomeric seismic isolation bearings", Earthq. Eng. Struct. Dyn., 43(13), 1955-1974. https://doi.org/10.1002/eqe.2431.
- Kumar, M., Whittaker, A.S. and Constantinou, M.C. (2015), "Experimental investigation of cavitation in elastomeric seismic isolation bearings", Eng. Struct., 101, 290-305. https://doi.org/10.1016/j.engstruct.2015.07.014.
- Li, Y., Lv, Z. and Wang, Y. (2020), "Blast response of aluminum foam sandwich panel with double V-shaped face plate", Int. J. Impact. Eng., 144, 103666. https://doi.org/10.1016/j.ijimpeng.2020.103666.
- Losanno, D., Hadad, H. and Serino, G. (2019), "Design charts for eurocode-based design of elastomeric seismic isolation systems", Soil Dyn. Earthq. Eng., 119, 488-498. https://doi.org/10.1016/j.soildyn.2017.12.017.
- Mahmoud, S. (2016), "Dynamic response of adjacent buildings under explosive loads", Arab. J. Sci. Eng., 41(10), 4007-4018. https://doi.org/10.1007/s13369-016-2086-6.
- Markou, A.A., Stefanou, G. and Manolis, G.D. (2019), "Stochastic energy measures for hybrid base isolation systems", Soil Dyn. Earthq. Eng., 119, 454-470. https://doi.org/10.1016/j.soildyn.2018.01.027.
- Mavronicola, E. and Komodromos, P. (2014), "On the response of base-isolated buildings using bilinear models for LRBs subjected to pulse-like ground motions: sharp vs. smooth behaviour", Earthq. Struct., 7(6), 1223-1240. http://dx.doi.org/10.12989/eas.2014.7.6.1223.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), OpenSees Command Language Manual, University of California, Berkeley, CA.
- Mills, C. (1987), "The design of concrete structure to resist explosions and weapon effects", Proceedings of the 1st Int. Conference on Concrete for Hazard Protections, Edinburgh.
- Mohebbi, M. and Dadkhah, H. (2017a), "Multi-objective semiactive base isolation system", Int. J. Optim. Civil. Eng., 7(3), 319-338. http://ijoce.iust.ac.ir/article-1-300-en.html.
- Mohebbi, M. and Dadkhah, H. (2017b), "Performance of semiactive base isolation systems under external explosion", Int. J. Struct. Stab. Dyn., 17(10), 1750112. http://dx.doi.org/10.1142/S0219455418500256.
- Mohebbi, M. and Dadkhah, H. (2019), "Optimal smart base isolation system for multiple earthquakes", Int. J. Optim. Civil. Eng., 9(1), 19-37. http://ijoce.iust.ac.ir/article-1-373-en.html
- Mohebbi, M. and Dadkhah, H. (2020), "Optimal design of base isolation system under blast loading", Int. J. Optim. Civil. Eng., 10(1), 101-115. http://ijoce.iust.ac.ir/article-1-424-en.html.
- Mohebbi, M., Dadkhah, H. and Rasouli Dabbagh, H. (2018), "A genetic algorithm-based design approach for smart base isolation systems", J. Intell. Mater. Syst. Struct., 29(7), 1315-1332. https://doi.org/10.1177%2F1045389X17733058. https://doi.org/10.1177%2F1045389X17733058
- Mondal, P.D., Ghosh, A.D. and Chakraborty, S. (2014), "Performance of NZ systems in the mitigation of underground blast induced vibration of structures", J. Vib. Control, 20(13), 2019-2031. https://doi.org/10.1177%2F1077546313481050. https://doi.org/10.1177%2F1077546313481050
- Mondal, P.D., Ghosh, A.D. and Chakraborty, S. (2017), "Performances of various base isolation systems in mitigation of structural vibration due to underground blast induced ground motion", Int. J. Struct. Stab. Dyn., 17(4), 1750043. https://doi.org/10.1142/S0219455417500432.
- Nagarajaiah, S. and Sun, X. (2001), "Base-isolated FCC building: impact response in Northridge earthquake", J. Struct. Eng., 127(9), 1063-1075. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1063).
- Nagarajaiah, S. and Xiaohong, S. (2000), "Response of baseisolated USC hospital building in Northridge earthquake", J. Struct. Eng., 126(10), 1177-1186. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1177).
- Naumyenko, I. and Petrovsky, I. (1956), The Shock Wave of a Nuclear Explosion, BOEH, CCCP, Moscow.
- Nourzadeh, D.D., Humar, J. and Braimah, A. (2017), "Comparison of response of building structures to blast loading and seismic excitations", Procedia Eng., 210, 320-325. https://doi.org/10.1016/j.proeng.2017.11.083.
- Oliveto, N.D., Markou, A.A. and Athanasiou, A. (2019), "Modeling of high damping rubber bearings under bidirectional shear loading", Soil Dyn. Earthq. Eng., 118, 179-190. https://doi.org/10.1016/j.soildyn.2018.12.017.
- Panchal, V. and Jangid, R. (2008), "Variable friction pendulum system for seismic isolation of liquid storage tanks", Nucl. Eng. Des., 238(6), 1304-1315. https://doi.org/10.1016/j.nucengdes.2007.10.011.
- Pigouni, A.E., Castellano, M.G., Infanti, S. and Colato, G.P. (2020), "Full-scale dynamic testing of pendulum isolators (Curved surface sliders)", Soil Dyn. Earthq. Eng., 130, 105983. https://doi.org/10.1016/j.soildyn.2019.105983.
- Pourzeynali, S. and Zarif, M. (2008), "Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms", J. Sound Vib., 311(3-5), 1141-1160. https://doi.org/10.1016/j.jsv.2007.10.008.
- Rao, S.S. (2009), Engineering Optimization: Theory and Practice, John Wiley & Sons, New Jersey.
- Reyes, J.C., Gonzalez, C. and Kalkan, E. (2018), "Improved ASCE/SEI 7-10 ground-motion scaling procedure for nonlinear analysis of buildings", J. Earthq. Eng., 1-24. https://doi.org/10.1080/13632469.2018.1526140.
- Robinson, W. and Tucker, A. (1976), "A lead-rubber shear damper", Bull. New Zealand Natl. Soc. Earthquake Engrg, 4, 251-259.
- Robinson, W.H. (1982), "Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes", Earthq. Eng. Struct. Dyn., 10(4), 593-604. https://doi.org/10.1002/eqe.4290100408.
- Roy, B.K. and Chakraborty, S. (2015), "Robust optimum design of base isolation system in seismic vibration control of structures under random system parameters", Struct. Saf., 55, 49-59. https://doi.org/10.1016/j.strusafe.2015.02.005.
- Sahu, D.K. and Patro, S.K. (2018), "Performance of energy dissipation devices in mitigation of blast-induced vibration of buildings", ASCE India Conference 2017, New Delhi, India. https://doi.org/10.1061/9780784482032.047.
- Shi, Y. and Stewart, M.G. (2015), "Damage and risk assessment for reinforced concrete wall panels subjected to explosive blast loading", Int. J. Impact. Eng., 85, 5-19. https://doi.org/10.1016/j.ijimpeng.2015.06.003.
- Shin, J., Scott, D.W., Stewart, L.K. and Jeon, J.S. (2020), "Multihazard assessment and mitigation for seismically-deficient RC building frames using artificial neural network models", Eng. Struct., 207, 110204. https://doi.org/10.1016/j.engstruct.2020.110204.
- Shiravand, M.R. and Rasouli, M. (2019), "Effects of substructure mass participation on natural period of multi-column base isolated bridges", Struct., 20, 88-104. https://doi.org/10.1016/j.istruc.2019.03.002.
- Shoaei, P. and Mahsuli, M. (2019), "Reliability-based design of steel moment frame structures isolated by lead-rubber bearing systems", Struct., 20, 765-778. https://doi.org/10.1016/j.istruc.2019.06.020.
- Shoji, G., Saito, K., Kameda, T. and Fueki, T.A. (2004), "Seismic performance of a laminated rubber bearing under tensile axial loading", Proceedings: 13th World Conference on Earthquake Engineering,
- Somerville, P.G. (1997), Development of ground motion time histories for phase 2 of the FEMA/SAC steel project, SAC Joint Venture,
- Su, L., Ahmadi, G. and Tadjbakhsh, I.G. (1991), "Performance of sliding resilient-friction base-isolation system", J. Struct. Eng., 117(1), 165-181. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(165).
- Sun, G., Zhang, J., Li, S., Fang, J., Wang, E. and Li, Q. (2019), "Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading", Thin-Walled Struct., 142, 499-515. https://doi.org/10.1016/j.tws.2019.04.029.
- Tolani, S., Bharti, S.D., Shrimali, M.K. and Datta, T.K. (2020), "Effect of Surface Blast on Multistory Buildings", J. Perform. Construct. Fac., 34(2), 04020015. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001415.
- Tyler, R. and Robinson, W. (1984), "High-strain tests on leadrubber bearings for earthquake loadings", Earthq. Eng., 17(2), 90-105. https://doi.org/10.5459/bnzsee.17.2.90-105.
- UFC 3-340-02 (2008), "Structures to Resist the Effects of Accidental Explosions", US Department of Defense,
- Warn, G.P. and Whittaker, A.S. (2006), A Study of the Coupled Horizontal-Vertical Behavior of Elastomeric and Lead-Rubber Seismic Isolation Bearings, University at Buffalo, New York.
- Warn, G.P., Whittaker, A.S. and Constantinou, M.C. (2007), "Vertical stiffness of elastomeric and lead-rubber seismic isolation bearings", J. Struct. Eng., 133(9), 1227-1236. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1227).
- Wu, C. and Hao, H. (2005), "Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions", Int. J. Impact. Eng., 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002.
- Yamamoto, M., Minewaki, S., Yoneda, H. and Higashino, M. (2012), "Nonlinear behavior of high damping rubber bearings under horizontal bidirectional loading: full-scale tests and analytical modeling", Earthq. Eng. Struct. Dyn., 41(13), 1845-1860. https://doi.org/10.1002/eqe.2161.
- Yang, Q., Liu, W., He, W. and Feng, D. (2010), "Tensile stiffness and deformation model of rubber isolators in tension and tension-shear states", J. Eng. Mech., 136(4), 429-437. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000007.
- Zareian, F., Lignos, D. and Krawinkler, H. (2010), "Evaluation of seismic collapse performance of steel special moment resisting frames using FEMA P695 (ATC-63) methodology", Structures Congress 2010, Orlando, Florida.
- Zehtab, B. and Salehi, H. (2019), "Finite-element-based monte carlo simulation for sandwich panel-retrofitted unreinforced masonry walls subject to air blast", Arab. J. Sci. Eng., 1-20. https://doi.org/10.1007/s13369-019-04123-y.
- Zhang, L., Chen, L., Fang, Q. and Zhang, Y.d. (2016), "Mitigation of blast loadings on structures by an anti-blast plastic water wall", J. Cent. South. Univ., 23(2), 461-469. https://doi.org/10.1007/s11771-016-3091-3.
- Zhang, R. and Phillips, B.M. (2015), "Performance and protection of base-isolated structures under blast loading", J. Eng. Mech., 142(1), 04015063. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000974.