DOI QR코드

DOI QR Code

레시틴이 함유된 경피 약물전달용 용해성 마이크로니들의 제작과 특성

Fabrication and Characterization of Dissolving Microneedles Containing Lecithin for Transdermal Drug Delivery

  • Choi, Won-Ho (Department of Chemical Engineering, Hongik University) ;
  • Kim, Bumsang (Department of Chemical Engineering, Hongik University)
  • 투고 : 2021.03.05
  • 심사 : 2021.03.17
  • 발행 : 2021.08.01

초록

약물의 피부 투과성을 향상시키기 위해 고안된 방법 중 하나인 용해성 마이크로니들의 재료로서 레시틴의 적용 가능성을 평가하고, 레시틴의 조성이 마이크로니들의 기계적 강도와 용해성, 그리고 최종적으로 rhodamine B (RhB)의 피부 투과성에 미치는 영향을 조사하였다. 마이크로니들용 몰드를 제작하는 기존의 포토리소그래피 방법에 비해서 간단하고 효율적인 laser-writing 기법을 이용하여 제작한 몰드로 균일한 모양과 크기의 바늘을 가진 용해성 마이크로니들을 제작하였다. 마이크로니들 내 레시틴의 조성은 바늘의 기계적 강도와 용해성에 영향을 미쳤으며, 그 결과 바늘 내 레시틴의 조성이 증가함에 따라서 바늘의 기계적 강도가 증가하고 최종적으로 마이크로니들에 탑재된 RhB의 피부 투과성이 향상되었다. 레시틴 대신 동일한 조성의 amylopectin (AP)가 함유된 마이크로니들과 비교하여 보면, 레시틴이 포함된 마이크로니들의 RhB 피부 투과성이 더 높은 것을 볼 수 있었다. 이러한 결과들은 레시틴이 용해성 마이크로니들의 재료로 사용될 수 있으며, 그 조성을 변화함에 따라서 마이크로니들의 피부에 대한 약물의 투과성을 제어할 수 있는 가능성이 있음을 보여준다.

The feasibility of lecithin as a material for dissolving microneedles to improve skin permeability of drugs and the effect of the composition of lecithin on the mechanical strength, solubility, and skin permeability of rhodamine B (RhB) of the dissolving microneedles were investigated. Dissolving microneedles with needles of uniform shape and size were fabricated with the mold made using the laser-writing technique, simpler and more efficient method compared to the photolithography method, the conventional method to fabricate the microneedle mold. The composition of lecithin in the microneedle affected the mechanical strength and solubility of the needle thus, the mechanical strength of the needle increased as the composition of lecithin in the needle increased, resulting in improving the skin permeability of RhB contained in the microneedles. When comparing the microneedles containing same composition of amylopectin (AP), the skin permeability of RhB of the microneedles containing lecithin was higher. These results indicate that lecithin can be used as a material for dissolving microneedles and the skin permeability of the microneedle could be controlled by changing the composition of lecithin.

키워드

과제정보

본 연구는 홍익대학교 학술연구진흥비에 의하여 지원되었으며, 이에 진심으로 감사드립니다.

참고문헌

  1. Giudice, E. L. and Campbell, J. D., "Needle-free Vaccine Delivery," Adv. Drug Deliv. Rev, 58, 68-89(2006). https://doi.org/10.1016/j.addr.2005.12.003
  2. Ito, Y., Yoshimura, M., Tanaka, T. and Takada, K., "Effect of Lipophilicity on the Bioavailability of dRugs After Percutaneous Administration by Dissolving Microneedles," J. Pharm. Sci., 101, 1145-1156(2012). https://doi.org/10.1002/jps.22814
  3. Sunkavalli, S., Eedara, B. B., Janga, K. Y., Velpula, A., Jukanti, R. and Bandari, S., "Preparation and Characterization of Docetaxel Self-nanoemulsifying Powders (SNEPs): A Strategy for Improved Oral Delivery," Korean J. Chem. Eng., 33, 1115-1124(2016). https://doi.org/10.1007/s11814-015-0205-9
  4. Kim, Y. C., Park, J.-H. and Prausnitz, M. R., "Microneedles for Drug and Vaccine Delivery," Adv. Drug Deliv. Rev., 64, 1547-1568(2012). https://doi.org/10.1016/j.addr.2012.04.005
  5. Prausnitz, M. R., "Microneedles for Transdermal Drug Delivery," Adv. Drug Deliv. Rev., 56, 581-587(2004). https://doi.org/10.1016/j.addr.2003.10.023
  6. Van der Maaden, K., Jiskoot, W. and Bouwstra, J., "Microneedle Technologies for (trans)dermal Drug and Vaccine Delivery," J. Control. Rel., 161, 645-655(2012). https://doi.org/10.1016/j.jconrel.2012.01.042
  7. Lee, J. W., Park, J. H. and Prausnitz, M. R., "Dissolving Microneedles for Transdermal Drug Delivery," Biomater., 29, 2113-2124 (2008). https://doi.org/10.1016/j.biomaterials.2007.12.048
  8. Liu, S., Jin, M. N., Quan, Y. S., Kamiyama, F., Kusamori, K., Katsumi, H. and Yamamoto, A., "Transdermal Delivery of Relatively High Molecular Weight Drugs Using Novel Self-dissolving Microneedle Arrays Fabricated from Hyaluronic Acid and Their Characteristics and Safety After Application to the Skin," Eur. J. Pharm., 86, 267-276(2014).
  9. Kim, J. D., Kim, M., Yang, H., Lee, K. and Jung, H., "Droplet-born Air Blowing: Novel Dissolving Microneedle Fabrication," J. Control. Rel., 170, 430-436(2013). https://doi.org/10.1016/j.jconrel.2013.05.026
  10. Zhu, Z., Luo, H., Lu, W., Laun, H., Wu, Y., Luo, J., Wang, Y., Pi, J., Lim, C. Y. and Wang, H., "Rapidly Dissolvable Microneedle Patches for Transdermal Delivery of Exenatide," Pharm Res., 31, 3348-3360(2014). https://doi.org/10.1007/s11095-014-1424-1
  11. Monkare, J., Nejadnik, M. R., Baccouche, K., Romeijn, S., Jiskoot, W. and Bouwstra, J. A., "IgG-loaded Hyaluronan-based Dissolving Microneedles for Intradermal Protein Delivery," J. Control. Rel., 218, 53-62(2015). https://doi.org/10.1016/j.jconrel.2015.10.002
  12. Bentley, M. V. L. B., Kedor, E. R. M., Vianna, R. M. and Collett, J. H., "The Influence of Lecithin and Urea on the in vitro Permeation of Hydrocortisone Acetate Through Skin from Hairless Mouse," Int. J. Pharm., 146, 255-262(1997). https://doi.org/10.1016/S0378-5173(96)04833-8
  13. Mahjour, M., Mauser, B., Rashidbaigi, Z. and Fawzi, M. B., "Effect of Egg Yolk Lecithins and Commercial Soybean Lecithins on in vitro Skin Permeation of Drugs," J. Control. Rel., 14, 243-252(1990). https://doi.org/10.1016/0168-3659(90)90164-O
  14. Yang, J. H. and Kim, B., "Synthesis and Characterization of Ethosomal Carriers Containing Cosmetic Ingredients for Enhanced Transdermal Delivery of Cosmetic Ingredients," Korean J. Chem. Eng., 35, 792-797(2018). https://doi.org/10.1007/s11814-017-0344-2
  15. Lee, S. H., Lee, H. H. and Choi, S. S., "Nanoparticle Popsicle: Transdermal Delivery of Nanoparticles Using Polymeric Microneedle Array," Korean J. Chem. Eng., 28, 1913-1917(2011). https://doi.org/10.1007/s11814-011-0077-6
  16. Jung, S. M., Kim, H. J., Kim, B. J., Joo, G. S., Yoon, T. S., Kim, Y. S. and Lee, H. H., "Amperometric Detection of Bisphenol-A on Laser Fabricated Capillary Electrophoresis Device," BioChip. J., 3, 219-223(2009).
  17. Park, J. H., Allen, M. G. and Prausnitz, M. R., "Biodegradable Polymer Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery," J. Control Rel., 104, 51-66(2005). https://doi.org/10.1016/j.jconrel.2005.02.002
  18. Feng, X. H., Pelton, R. and Leduc, M., "Mechanical Properties of Polyelectrolyte Complex Films Based on Polyvinylamine and Carboxymethyl Cellulose," Ind. Eng. Chem. Res., 45, 6665-6671 (2006). https://doi.org/10.1021/ie060511f
  19. Hong, X., Wu, Z., Chen, L., Wu, F., Wei, L. and Yuan, W., "Hydrogel Microneedle Arrays for Transdermal Drug Delivery," NanoMicro. Lett., 6, 191-199(2014).