Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (11602089), and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX505).
References
- Arafat, H.N. and Nayfeh. A.H. (2003), "Non-linear responses of suspended cables to primary resonance excitations", J. Sound Vib., 266(2), 325-354. https://doi.org/10.1016/S0022-460X(02)01393-7.
- Bayat, M., Paker, I. and Bayat, M. (2017), "Nonlinear vibration of multi-body systems with linear and nonlinear springs", Steel Compos. Struct., 25(4), 497-503. https://doi.org/10.12989/scs.2017.25.4.497.
- Bemmo, D.T., Siewe, M.S. and Tchawoua, C. (2011), "Nonlinear oscillations of the FitzHugh-Nagumo equations under combined external and two-frequency parametric excitations", Phys. Lett. A., 375(19), 1944-1953. https://doi.org/10.1016/j.physleta.2011.02.072.
- Bitar, D., Kacem, N., Bouhaddi, N. and Collet, M. (2015), "Collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations", Nonlinear Dynam., 82(1-2), 749-766. https://doi.org/10.1007/s11071-015-2194-y.
- Bauomy, H.S. and El-Sayed, A.T. (2018), "Vibration performance of a vertical conveyor system under two simultaneous resonances", Arch. Appl. Mech., 88(8), 1349-1368. https://doi.org/10.1007/s00419-018-1375-9.
- Breslavsky, I.D. and Amabili, M. (2018), "Nonlinear vibrations of a circular cylindrical shell with multiple internal resonances under multi-harmonic excitation", Nonlinear Dynam., 93(1), 53-62. https://doi.org/10.1007/s11071-017-3983-2.
- Benedettini, F., Rega, G. and Alaggio, R. (1995), "Nonlinear oscillations of a four-degree-of freedom model of a suspended cable under multiple internal resonance conditions", J. Sound Vib., 182(5), 775-798. https://doi.org/10.1006/jsvi.1995.0232.
- Cong, Y. and Kang, H. (2019), "Planar nonlinear dynamic behavior of a cable-stayed bridge under excitation of tower motion", Eur. J. Mech. A-Solid., 76, 91-107. https://doi.org/10.1016/j.euromechsol.2019.03.010.
- Cong, Y., Kang, H. and Yan, G. (2021) "Investigation of dynamic behavior of a cable-stayed cantilever beam under two-frequency excitations", Int. J. Nonlinear Mech., 129, 103670. https://doi.org/10.1016/j.ijnonlinmec.2021.103670.
- Chen, H., Hou, L., Chen, Y. and Yang, R. (2017), "Dynamic characteristics of flexible rotor with squeeze film damper excited by two frequencies", Nonlinear Dynam., 87(4), https://doi.org/10.1007/s11071-016-3204-4.
- Cheng, G. and Zu, J.W. (2004), "Dynamics of a dry friction oscillator under two-frequency excitations", J. Sound Vib., 275(35), 591-603. https://doi.org/10.1016/j.jsv.2003.06.027.
- Deng, H.Q., Li, T.J., Xue, B.J. and Wang, Z.W. (2015), "Analysis of thermally induced vibration of cable-beam structures", Struct. Eng. Mech., 53(3), 443-453. https://doi.org/10.12989/sem.2015.53.3.443.
- Ding, H. and Zu, J.W. (2013), "Periodic and chaotic responses of an axially Accelerating viscoelastic beam under two-frequency excitations", Int. J. Appl. Mech., 5(2), 1350019. https://doi.org/10.1142/S1758825113500191.
- Ding, H. (2016), "Steady-state responses of a belt-drive dynamical system under dual excitations", Acta Mech. Sinica., 32(1), 156-169. https://doi.org/10.1007/s10409-015-0510-x.
- Fang, F., Xia, G. and Wang, J. (2018), "Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations", Acta Mech. Sinica., 34(3), 561-577. https://doi.org/10.1007/s10409-017-0743-y.
- Gattulli, V., Lepidi, M., Potenza, F. and Sabatino, U.D. (2019), "Modal interactions in the nonlinear dynamics of a beam-cablebeam", Nonlinear Dynam., 96(4), 2547-2566. https://doi.org/10.1007/s11071-019-04940-8.
- Guo, T., Kang, H., Wang, L., Liu, Q. and Zhao, Y. (2018), "Modal resonant dynamics of cables with a flexible support: a modulated diffraction problem", Mech. Syst. Signal Pr., 106, 229-248. https://doi.org/10.1016/j.ymssp.2017.12.023.
- Irvine, H. (1981), "Cable Structures", MIT Press.
- Ilyas, S., Alfosail, F.K. and Younis, M.I. (2019a), "On the Application of the Multiple Scales Method on Electrostatically Actuated Resonators", J. Comput. Nonlinear Dynam., 14, 041006-1-8. https://doi.org/10.1115/1.4042694.
- Ilyas, S., Alfosail, F.K., Bellaredj, M.L.F. and Younis, M.I. (2019b), "On the response of MEMS resonators under generic electrostatic loadings: experiments and applications", Nonlinear Dynam., 95(3), 2263-2274. https://doi.org/10.1007/s11071-018-4690-3 .
- Kacem, N., Baguet, S., Duraffourg, L., Jourdan, G., Dufour, R. and Hentz, S. (2015), "Overcoming limitations of nanomechanical resonators with simultaneous resonances" Appl. Phys. Lett., 107, 073105. http://doi.org/10.1063/1.4928711.
- Kalita, B. and Dwivedy, S.K. (2019), "Nonlinear dynamics of a parametrically excited pneumatic artificial muscle (PAM) actuator with simultaneous resonance condition", Mech. Mach. Theory., 135, 281-297. https://doi.org/10.1016/j.mechmachtheory.2019.01.031.
- Kim, K.W., Park, N.C., Song, W.K., Kim, M.K. and Parnichkun, M. (2019), "Sensitivity Analysis of Cable Parameters on Tension of a Suspended Cable under Combination Resonances", Int. J. Struct. Stab. Dynam., 19(3), 1950025. https://doi.org/10.1142/S0219455419500251.
- Kang, H., Guo, T., Zhu, W., Su, J. and Zhao, B. (2019), "Dynamical modeling and non-planar coupled behavior of inclined CFRP cables under simultaneous internal and external resonances", Appl. Math. Mech.-Engl., 40(5), 649-678. https://doi.org/10.1007/s10483-019-2472-6.
- Kang, H., Cong, Y. and Yan, G. (2020), "Theoretical analysis of dynamic behaviors of cable-stayed bridges excited by two harmonic forces", Nonlinear Dynam. 95(3), 2263-2274. https://doi.org/10.1007/s11071-020-05763-8
- Luongo, A. and Zulli, D. (2013), "Mathematical Models of Beams and Cables". New York, Wiley.
- Li, Z. J., Li, P., He, Z. and Cao, P. (2013), "Static and free vibration analysis of shallow sagging inclined cables", Struct. Eng. Mech., 45(2), 145-157. https://doi.org/10.12989/sem.2013.45.2.145.
- Lacarbonara, W. (2013), "Nonlinear Structural Mechanics: Theory", Dynamical Phenomena and Modeling, 1st edn. Springer.
- Li, H. Y., Li, J., Lang, T. Y. and Zhu, X. (2017), "Dynamics of an axially moving unidirectional plate partially immersed in fluid under two frequency parametric excitation", Int. J. Nonlinear Mech., 99, 31-39. https://doi.org/10.1016/j.ijnonlinmec.2017.10.019.
- Mao, X.Y., Ding, H., Lim, C.W. and Chen, L.Q. (2016), "Superharmonic resonance and multi-frequency responses of a supercritical translating beam", J. Sound Vib., 385, 267-283. https://doi.org/10.1016/j.jsv.2016.08.032.
- Michon, G., Manin, L., Remond, D., Dufour, R. and Parker, R.G. (2008), "Parametric instability of an axially moving belt subjected to multifrequency excitations: experiments and analytical validation", J. Appl. Mech., 75(4), 041004-1-8. https://doi.org/10.1115/1.2910891.
- Nguyen, H. (2013), "Simultaneous resonances involving two mode shapes of parametrically-excited rectangular plates", J. Sound Vib., 332(20), 5103-5114. https://doi.org/10.1016/j.jsv.2013.04.010.
- Nayfeh, A.H. (1985), "The response of non-linear single-degreeof-freedom systems to multifrequency excitations", J. Sound Vib., 102(3), https://doi.org/10.1016/S0022-460X(85)80150-4.
- Nayfeh, A.H. and Jebril, A.E.S. (1987), "The response of twodegree-of-freedom systems with quadratic and cubic nonlinearities to multi-frequency parametric excitations", J. Sound Vib., 115(1), 83-101. https://doi.org/10.1016/0022-460X(87)90493-7.
- Nayfeh, A.H. and Mook, D.T. (1979), "Nonlinear Oscillations", John Wiley Sons, Inc.
- Nayfeh A.H. and Pai, F.P. (2004), "Linear and Nonlinear structural Mechanics", A John Wiely Sons, Inc. Hoboken, New Jersy.
- Plaut, R.H., Haquang, N. and Mook, D.T. (1986), "Simultaneous resonances in non-linear structural vibrations under twofrequency excitation", J. Sound Vib., 106(3), 361- https://doi.org/10.1016/0022-460X(86)90184-7.
- Plaut, R.H., Gentry, J.J. and Mook, D.T. (1990), "Resonances in non-linear structural vibrations involving two external periodic excitations", J. Sound Vib., 140(3), 371-379. https://doi.org/10.1016/0022-460X(90)90756-P.
- Plaut, R.H. and Hsieh, J.C. (1985), "Oscillations and instability of a shallow-arch under two-frequency excitation", J. Sound Vib., 102(2), 189-201. https://doi.org/10.1016/s0022-460x(85)80052-3.
- Rezaiee-Pajand, M., Masoodi, A.R. and Rajabzadeh-Safaei, N. (2019), "Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures", Steel Compos. Struct., 30(6), 493-516. https://doi.org/10.12989/scs.2019.30.6.493.
- Rega, G. (2004a), "Nonlinear vibrations of suspended cables, Part I: Modeling and analysis", Appl. Mech. Rev., 57(6), 443-478. https://doi.org/10.1115/1.1777224.
- Rega, G. (2004b), "Nonlinear vibrations of suspended cables, Part II: Deterministic phenomena", Appl. Mech. Rev., 57(6), 479-514. https://doi.org/10.1115/1.1777225.
- Rezaei, M., Talebitooti, R. and Rahmanian, S. (2019), "Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances", Energy, 182, 369-380. https://doi.org/10.1016/j.energy.2019.05.212.
- Rega, G., Lacarbonara, W., Nayfeh, A.H. and Chin, C.M. (1999), "Multiple resonances in suspended cables: direct versus reduced-order models", Int. J. Nonlinear Mech., 34(5), 901-924. https://doi.org/10.1016/S0020-7462(98)00065-1.
- Sun, C., Zhao, Y., Peng, J., Kang, H. and Zhao, Y. (2018), "Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation", Eng. Struct., 172(1), 938-955. https://doi.org/10.1016/j.engstruct.2018.06.088.
- Sahoo, B. (2019), "Nonlinear dynamics of a viscoelastic traveling beam with time-dependent axial velocity and variable axial tension", Nonlinear Dynam., 97(1), 269-296. https://doi.org/10.1007/s11071-019-04969-9.
- Sahoo, B. (2020), "Nonlinear dynamics of a viscoelastic beam traveling with pulsating speed, variable axial tension under twofrequency parametric excitations and internal resonance". Nonlinear Dynam, 99, 945-979. https://doi.org/10.1007/s11071-019-05264-3.
- Sahoo, B. (2021), "Nonlinear vibration analysis of a hinged-clamped beam moving with pulsating speed and subjected to internal resonance", Int. J. Struct. Stab. Dynam., 21(8), 2150117. https://doi.org/10.1142/S0219455421501170.
- Sahoo, B., Panda, L.N. and Pohit, G. (2015a), "Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation", Int. J Nonlinear Mech., 78, 35-44. https://doi.org/10.1016/j.ijnonlinmec.2015.09.017.
- Sahoo, B., Panda, L. and Pohit, G. (2015b), "Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam", Nonlinear Dynam., 82(4), 1721-1742. https://doi.org/10.1007/s11071-015-2272-1.
- Sahoo, B, Panda, L.N. and Pohit, G. (2017), "Stability, bifurcation and chaos of a traveling viscoelastic beam tuned to 3:1 internal resonance and subjected to parametric Excitation", Int. J. Bifur. Chaos, 27(2), 1750017. https://doi.org/10.1142/S0218127417500171.
- Warminski, J., Zulli, D., Rega, G. and Latalski, J. (2016), "Revisited modelling and multimodal nonlinear oscillations of a sagged cable under support motion", Meccanica., 51(11), 2541-2575. https://doi.org/10.1007/s11012-016-0450-y.
- Yi, Z., Yuan, M., Tu, G. and Zeng, Y. (2019), Modeling of the multi-cable supported arch and a novel technique to investigate the natural vibratory characteristics", Appl. Math. Model., 75, 640-662. https://doi.org/10.1016/j.apm.2019.05.055.
- Yang, S.P., Nayfeh, A.H. and Mook, D.T. (1998), "Combination resonances in the response of the Duffing oscillator to a threefrequency excitation", Acta Mech., 131(3), 235-245. https://doi.org/10.1007/bf01177227.
- Zhang, W.F., Liu, Y.C., Ji, J. and Teng, Z.C. (2014), "Analysis of dynamic behavior for truss cable structures", Steel Compos. Struct., 16(2), 117-133. https://doi.org/10.12989/scs.2014.16.2.117.
- Zhao, Y., Guo, Z., Huang, C., Chen, L. and Li, S. (2018a), "Analytical solutions for planar simultaneous resonances of suspended cables involving two external periodic excitations", Acta Mech., 229(11), 4393-4411. https://doi.org/10.1007/s00707-018-2224-1.
- Zhao, Y., Huang, C., Chen, L. and Peng, J. (2018b), "Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects", J. Sound Vib., 416, 279-294. https://doi.org/10.1016/j.jsv.2017.11.035.
- Zhao, Y., Lin, H., Chen, L. and Wang, C. (2019), "Simultaneous resonances of suspended cables subjected to primary and superharmonic excitations in thermal environments", Int. J. Struct. Stab. Dyam., 19(12), 1950155 https://doi.org/10.1142/S0219455419501554.
- Zhao, Y., Zheng, P., Lin, H. and Huang, C. (2021), "Temperature effects on dynamic properties of suspended cables subjected to dual harmonic excitations", J. Shock Vib., 8883036. https://doi.org/10.1155/2021/8883036.