DOI QR코드

DOI QR Code

진공 원심 주조를 이용한 Ti-48Al-2Cr-2Nb 합금 터보차저 터빈휠 제작

Manufacturing of Ti-48Al-2Cr-2Nb Alloy Turbocharger Turbine Wheel by Vacuum Centrifugal Casting

  • 투고 : 2020.09.23
  • 심사 : 2021.01.21
  • 발행 : 2021.04.30

초록

고온 환경에 대한 우수한 특성을 바탕으로 산업 장비의 고온 재료에 Ti-48Al-2Cr-2Nb 합금이 사용된다. 본 연구에서는 Ti-48Al-2Cr-2Nb 합금 터보 차저 터빈 휠을 진공 원심 주조 방법으로 제작했다. 알루미나 몰드를 이용한 원심 주조시 터보 차저 터빈 휠 블레이드의 미스런 불량을 방지하기 위한 조건을 조사하였다. 진공 원심 주조로 제조된 합금의 미세 구조는 광학 현미경 (OM), 마이크로 비커스 경도 분석기 (HV), X- 선 회절 (XRD) 및 SEM-EDS로 연구하였다. 주조된 Ti-48Al-2Cr-2Nb 합금의 경도 및 SEM-EDS 결과는 산화층 (α- 케이스)의 두께가 일반적으로 50㎛ 미만임을 보여주었다. 예열 온도 1,100oC, RPM 260, 게이트 크기가 큰 알루미나 몰드의 경우 미스런 불량이 거의 없었다. 따라서 높은 예열 온도, 중간 RPM, 큰 게이트 크기 및 알파 케이스 형성 억제를 위한 알루미나 몰드를 통해 미스런이 적은 Ti-48Al-2Cr-2Nb 합금 터보 차저 터빈 휠을 얻을 수 있음을 확인했다.

Based on its good compatibility with high-temperature environments, the Ti-48Al-2Cr-2Nb alloy is used for high-temperature materials of industrial equipment. In this study, a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel was fabricated by a vacuum centrifugal casting method. The conditions that prevent misrun defects of the turbocharger turbine wheel blade from centrifugal casting using alumina molds were investigated. The microstructure of the alloy prepared by vacuum centrifugal casting was studied by means of optical microscopy (OM), with a micro-Vickers hardness analyzer (HV), by X-ray diffraction (XRD) and by SEM-EDS. The HV and SEM-EDS examinations of the as-cast Ti-48Al-2Cr-2Nb alloy showed that the thickness of the oxide layer (α-case) was typically less than 50 ㎛. At a high preheating temperature of 1,100℃, a moderate RPM of 260, and with an alumina mold with a large gate size, there were almost no misrun defects. Therefore, it was confirmed that a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel with fewer misrun defects could be achieved through a high preheating temperature, a moderate RPM, a large gate size and an alumina mold to suppress the formation of alpha-case components.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1F1A1050885).

참고문헌

  1. Ryu JH, Lee HJ, Cho HS, Paeng JM, Park JB and Lee JI, Journal of the Korean Crystal Growth and Crystal Technology, 27(5) (2017) 229. https://doi.org/10.6111/JKCGCT.2017.27.5.229
  2. Pyo SG, Oh JK, Kim NJ and M. Yamaguchi, J. Kor. Inst. Met. & Mater., 38(5) (2000) 629.
  3. Lee YH, Yeom JT, Park NK, Hong SS, Shim IO, Hwang SM and Lee CS, J. Kor. Inst. Met. & Mater., 43(12) (2005) 847.
  4. Lee DG, Lee YH, Lee CS and Lee S, J. Kor. Inst. Met. & Mater., 42(6) (2004) 455.
  5. Pak SJ and H. Margolin, Titanium-World Conference, "Void Nucleation, Void Growth and Tensile Behavior of Ti-10V2Fe-3Al", 7 (1992) 255.
  6. X. Wu, Intermetallics, 14(10-11) (2006) 1114. https://doi.org/10.1016/j.intermet.2005.10.019
  7. Jung JY, Park JK and Chun CH, Intermetallics, 7(9) (1999) 1033. https://doi.org/10.1016/S0966-9795(99)00011-4
  8. T. Tetsui, K. Shindo, S. Kobayashi and M. Takeyama, Scripta Mater., 47(6) (2002) 399. https://doi.org/10.1016/S1359-6462(02)00158-6
  9. S. Djanarthany, J.-C. Viala and J. Bouix, Mater. Chem. Phys., 72 (3) (2001) 301. https://doi.org/10.1016/S0254-0584(01)00328-5
  10. H. Clemens and H. Kestler, Adv. Eng. Mater., 2(9) (2000) 551. https://doi.org/10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U
  11. T. Tetsui, Adv. Eng. Mater., 3(5) (2001) 307. https://doi.org/10.1002/1527-2648(200105)3:5<307::AID-ADEM307>3.0.CO;2-3
  12. K. Liu, Y.C. Ma, M. Gao, G.B. Rao, Y.Y. Li, K. Wei, X. Wu and M.H. Loretto, Intermetallics, 13(9) (2005) 925. https://doi.org/10.1016/j.intermet.2004.12.004
  13. Sung SY and Kim YJ, Intermetallics, 15(4) (2007) 468. https://doi.org/10.1016/j.intermet.2006.07.009
  14. P.X. Fu, X.H. Kang, Y.C. Ma, K. Liu, D.Z. Li and Y.Y.Li, Intermetallics, 16(2) (2008) 130. https://doi.org/10.1016/j.intermet.2007.08.007
  15. J. Fan, X. Li, Y. Su, J. Guo and H. Fu, Mater.Des., 34 (2012) 552. https://doi.org/10.1016/j.matdes.2011.05.007
  16. Jang HS, Jung IS, Oh MH and Wee DM, J. Kor. Inst. Met & Mater., 38(8) (2000) 1042.
  17. Jung IS, Jang HS, Oh MH and Wee DM, J. Kor. Inst. Met & Mater., 38(8) (2000) 1047.
  18. Sung SY and Kim YJ, Mater. Sci. Eng. A, 405(1-2) (2005) 173. https://doi.org/10.1016/j.msea.2005.05.092
  19. Kim JM, Park JS, Cho JI and Kim HG, J. Korea Foundry Society, 30(1) (2010) 29.