DOI QR코드

DOI QR Code

Solubilization of Cresol Isomers by the Cationic Surfactant of TTTAB in Aqueous Solution of n-Butanol and NaCl

n-부탄올 및 NaCl 수용액에서 양이온 계면활성제인 TTAB에 의한 크레졸 이성질체들의 가용화에 대한 연구

  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Tech. & Education)
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Received : 2021.05.12
  • Accepted : 2021.06.30
  • Published : 2021.06.30

Abstract

We tried to investigate the effects of substituent position, temperature, and additives such as NaCl and n-butanol on the solubilizations of cresol isomers by tetradecyltrimethylammonium bromide (TTAB), using the UV-Vis spectrophotometric method. The measured solubilization constants (Ks) values for each cresol isomer increased in the order o-cresolo and ∆Ho values for the solubilizations of cresols were all negative values but the ∆So values were all positive values within the measured ranges. The values of ∆Go increased also with increasing the concentration of n-butanol but decreased with increasing the concentration of NaCl. From these facts, we could conclude that both the enthalpy and entropy changes contribute together for the solubilizations of cresols isomers by cationic surfactant of TTAB and they are solubilized in the polar palisade region or at the surface of micelle.

양이온 계면활성제인 tetradecyltrimethylammonium bromide (TTAB)에 의한 크레졸 이성질체의 가용화에 미치는 치환기, 온도 그리고 NaCl과 n-부탄올과 같은 첨가제의 효과를 UV-Vis법으로 측정하였다. 가용화상수(Ks)값은 o-크레졸s값은 감소하였다. 크레졸 이성질체들의 가용화에 대하여 계산한 ∆Go값과 ∆Ho값은 모두 음의 값을 나타내었다. 그러나 ∆So값은 모두 양의 값을 나타내었다. 또한 ∆Go값은 n-부탄올의 농도가 증가할수록 증가하는 경향을 그러나 NaCl의 농도가 증가할수록 더욱 감소하는 경향을 보였다. 이러한 사실들로부터 크레졸 이성질체들의 가용화에는 엔탈피와 엔트로피가 동시에 기여하고 있으며, 또한 크레졸분자들이 가용화되는 위치는 미셀의 표면이나 palisade층에서 주로 이루어짐을 알 수 있다.

Keywords

Acknowledgement

본 연구는 한국기술교육대학교의 2021년도 교육연구진흥비에 의해 수행된 것이며, 연구지원에 감사드립니다.

References

  1. A. Patra, N. Samanta, D.K. Das, R.K. Mitra, "Enhanced catalytic activity of α-chymotrypsin in cationic surfactant solutions: the component specificity revisited", Journal of Physical Chemistry B, Vol.121, pp.1457-1465, (2017). https://doi.org/10.1021/acs.jpcb.6b10472
  2. V. Wintgens, J.G. Harangozo, Z. Miskolczy, J.-M. Guigner, C. Amiel, L. Biczok, "Effect of headgroup variation on the self-assembly of cationic surfactants with sulfonatocalix[6]arene", Langmuir, Vol.33, pp.8052-8061, (2017). https://doi.org/10.1021/acs.langmuir.7b01941
  3. B.H. Lee, "Effects of various alcohols and salts on the mixed micellization of cationic surfactant (CPC) with nonionic surfactant (TX-100)", Colloid and Interface Science Communications, Vol.19, pp.1-4, (2017). https://doi.org/10.1016/j.colcom.2017.05.001
  4. Y. Li, T. Sato, "Complexation of a globular protein, β-lactoglobulin, with an anionic surfactant in aqueous solution", Langmuir, Vol.33, pp.5491-5498, (2017). https://doi.org/10.1021/acs.langmuir.7b00941
  5. Z. Wang, R.G. Larson, "Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles: effects of sodium chloride and sodium salicylate salts", Journal of Physical Chemistry B, Vol.113, pp.13697-13710, (2009). https://doi.org/10.1021/jp901576e
  6. W. Muller, C. Dejugnat, T. Zemb, J.F. Dufreche, O. Diat, "How do anions affect self-assembly and solubility of cetylpyridinium surfactants in water", Journal of Physical Chemistry B, Vol.117, pp.1345-1356, (2013). https://doi.org/10.1021/jp3093622
  7. J. Luczak, C. Jungnickel, M. Markiewicz, J. Hupka, "Solibilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids", Journal of Physical Chemistry B, Vol.117, pp.5653-5658, (2013). https://doi.org/10.1021/jp3112205
  8. S.P. Moulik, M.E. Haque, P.K. Jana, A.R. Das, "Micellar properties of cationic surfactants in pure and mixed states", Journal of Physical Chemistry, Vol.100, pp.701-708, (1996). https://doi.org/10.1021/jp9506494
  9. N.M. Lee, B.H. Lee, "Effects of temperature and surfactant structure on the solubilization of 4-chlorobenzoic acid by various surfactants", Journal of Chemical Thermodynamics, Vol.101, pp.1-6, (2016). https://doi.org/10.1016/j.jct.2016.05.002
  10. C.A. Bunton, L. Sepulveda, "Hydrophobic and coulombic interactions in the micellar binding of phenols and phenoxide ions", Journal of Physical Chemistry, Vol.83, pp. 680-683, (1979). https://doi.org/10.1021/j100469a008
  11. T. Mehling, L. Kloss, T. Ingram, I. Smirnova, "Partition coefficients of ionizable solutes in mixed nonionic/ionic micellar systems", Langmuir, Vol.29, pp.1035-1044, (2013). https://doi.org/10.1021/la304222n
  12. J.C. Bozelli Jr, Y.H. Hou, R.M. Epand, "Thermodynamics of methyl-β-cyclodextrin induced lipid vesicle solubilization: effect of lipid headgroup and backbone", Langmuir, Vol.33, pp.13882-13891, (2017). https://doi.org/10.1021/acs.langmuir.7b03447
  13. B.H. Lee, S.D. Christian, E.E. Tucker, J.F. Scamehorn, "Solubilization of mono- and dichlorophenols by hexadecylpyridinium chloride micelle. Effects of substituent groups", Langmuir, Vol.6, pp.230-235, (1990). https://doi.org/10.1021/la00091a037
  14. I.J. Park, B.H. Lee, "Mixed micellization of sodium dodecylbenzene sulfonate with polyoxyethylene lauryl ether surfactants (POLE 4 and POLE 23) in n-butanol aqueous solution", Journal of Surfactants and Detergents, Vol.15, pp.41-46, (2012). https://doi.org/10.1007/s11743-011-1287-y
  15. C. Hirose, L. Sepulveda, "Transfer free energies of p-alkyl-substituted bnezene derivatives, benzene, and toluene from water to cationic and anionic micelles and to n-heptane", Journal of Physical Chemistry, Vol.85, pp.3689-3694, (1981). https://doi.org/10.1021/j150624a032
  16. A. Makayssi, R. Bury, C. Treiner, "Thermodynamics of micellar solubilization for 1-pentanol in weakly interacting binary cationic surfactant mixtures", Langmuir, Vol.10, pp.1359-1365, (1994). https://doi.org/10.1021/la00017a009
  17. H. Hoiland, E. Ljosland, S. Baklund, "Solubilization of alcohols and alkanes in aqueous solution of sodium dodecyl sulfate", Journal of Colloid & Interface Science, Vol.101, pp.467-471, (1984). https://doi.org/10.1016/0021-9797(84)90058-4
  18. D. Yordanova, E. Ritter, I. Smirnova, S. Jakobtorweihen, "Micellization and partition equilibria in mixed nonionic/ionic micellar systems: predictions with molecular models", Langmuir, Vol.33, pp.12306-12316, (2017). https://doi.org/10.1021/acs.langmuir.7b02813
  19. Y. Eda, N. Takisawa, K. Shirahama, "Solubilization of isomeric alkanols in ionic micelles", Langmuir, Vol.13, pp.2432-2435, (1997). https://doi.org/10.1021/la960856a
  20. G. Cerichelli, "Role of counterions in the solubilization of benzene by cetyltrimethylammonium aggregates. A multinuclear NMR investigation", Langmuir, Vol.16, pp.182-187, (2000). https://doi.org/10.1021/la990748z
  21. L. Nong, C. Xiao, Z. Zhong, "Physicochemical properties of novel phosphorbetaine zwitterionic surfactants and mixed systems with an anionic surfactant", Journal of Surfactants and Detergents, Vol.14. pp.433-438, (2011). https://doi.org/10.1007/s11743-011-1259-2
  22. S. Friesen, T. Buchecker, A. Cognigni, K. Bica, R. Buchner, "Hydration and counterion binding of [C12MIN] micelles", Langmuir, Vol.33, pp.9844-9856, (2017). https://doi.org/10.1021/acs.langmuir.7b02201