과제정보
This research was supported by the Gil Medical Center (FRD2019-11-02), and by the GRRC program of Gyeonggi Province (No. GRRC Gachon 2020-B01).
참고문헌
- Mastro AM, Gay CV, Welch DR. The skeleton as a unique environment for breast cancer cells. Clinical & Experimental Metastasis. 2003;20(3):275-84. https://doi.org/10.1023/A:1022995403081
- David Roodman G, Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep. 2015;4:753.
- Shin SO, Kim SK, Kim MS. Pallative effect of radiation therapy in management of symptomatic osseous metastases. Yeungnam University Journal of Medicine. 1992;9(1):102. https://doi.org/10.12701/yujm.1992.9.1.102
- Sohn SK et al. Collective Review of Cases of Spinal Metastases. The Korean Orthopaedic. 1988;23(4):1087-96. https://doi.org/10.4055/jkoa.1988.23.4.1087
- Batson OB, MA. The Fucntion of the Vertearal Veins and Their Role in the Spread of Metastases. Annals of Sugery. 1940;112(1):138-49. https://doi.org/10.1097/00000658-194007000-00016
- Liaw C-C, et al. Hepatocellular Carcinoma Presenting as Bone Metastasis. Cancer. 1989; 64(8):1753-57. https://doi.org/10.1002/1097-0142(19891015)64:8<1753::AID-CNCR2820640833>3.0.CO;2-N
- Park J-M. Interventional treatments for cancer pain due to bone metastasis. Anesthesia and Pain Medicine. 2015;10(3):149-64. https://doi.org/10.17085/apm.2015.10.3.149
- Koom WS, et al. Radiation Therapy for Bone Metastasis from Hepatocellular Carcinoma. Clinical and Molecular Hepatology. 2002;8(3):304-11.
- Heindel W. et al. The diagnostic imaging of bone metastases. Deutsches Arzteblatt international. 2014;111(44):741-47.
- HM, B.-C., J.-Z. O, M. JD. Diagnosis and Treatment Options of Spinal Metastases. Rev Invest Clin. 2015;67(3):140-57.
- Wang Z, et al. Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget. 2015;11(7):12612-22.
- Eun PJ, KH Sung Radiomics as a Quantitative Imaging Biomarker: Practical Considerations and the Current Standpoint in Neuro-oncologic Studies. Nuclear medicine and molecular imaging : NMMI. 2018;52(2):99-108. https://doi.org/10.1007/s13139-017-0512-7
- Ahn SJ, et al. Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer. Scientific Reports. 2020;10(1):8905. https://doi.org/10.1038/s41598-020-65470-7
- Kim KH. Non-small cell lung cancer recurrence prediction model using deep learning-based radiomics. Conf Proc 대한 기계학회 춘추학술대회, 2020. p. 53.
- Lee G, Bak SH, Lee HY. CT Radiomics in Thoracic Oncology: Technique and Clinical Applications. Nuclear Medicine and Molecular Imaging. 2018;52(2):91-8. https://doi.org/10.1007/s13139-017-0506-5
- A F., et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012; 30(9):1323-41. https://doi.org/10.1016/j.mri.2012.05.001
- Yang Y, et al. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma. J Magn Reson Imaging. 2019;49(5):1263-74. https://doi.org/10.1002/jmri.26524
- McKay C, Fujinaga I, Depalle, P. jAudio: A feature extraction library. in Proceedings of the International Conference on Music Information Retrieval. 2005.
- Drotar P, Gazda J, Smekal Z. An experimental comparison of feature selection methods on two-class biomedical datasets. Computers in Biology and Medicine. 2015;66:1-10. https://doi.org/10.1016/j.compbiomed.2015.08.010
- Kuffner R, et al. Inferring gene regulatory networks by ANOVA. Bioinformatics. 2012;28(10):1376-82. https://doi.org/10.1093/bioinformatics/bts143
- Chandrashekar G, Sahin F. A survey on feature selection methods. Computers & Electrical Engineering. 2014;40(1):16-28. https://doi.org/10.1016/j.compeleceng.2013.11.024
- Yan K, Zhang D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical. 2015;212:353-63. https://doi.org/10.1016/j.snb.2015.02.025
- Lu M. Embedded feature selection accounting for unknown data heterogeneity. Expert Systems with Applications. 2019;119:350-61. https://doi.org/10.1016/j.eswa.2018.11.006
- Altmann A., et al. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010;26(10):1340-47. https://doi.org/10.1093/bioinformatics/btq134
- Verma C, Illes Z, Sttofova V. Real-time classification of national and international students for ICT and mobile technology: an experimental study on Indian and Hungarian University. Journal of Physics: Conference Series. 2020;1432:12091. https://doi.org/10.1088/1742-6596/1432/1/012091
- Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005;47(4):458-72. https://doi.org/10.1002/bimj.200410135
- Armstrong RA, Slade SV, Eperjesi F. An introduction to analysis of variance (ANOVA) with special reference to data from clinical experiments in optometry. Ophthalmic and Physiological Optics. 2000;20(3):235-41. https://doi.org/10.1016/S0275-5408(99)00064-2
- Shin DS, Ryu SM, Park CH. The Diagnostic Strategy for Malignant Bone Tumors. The Korean Orthopaedic. 2015; 50(6):429-37. https://doi.org/10.4055/jkoa.2015.50.6.429