References
- Charnock, Deborah. "The DISCERN handbook." Quality criteria for consumer health information on treatment choices. Radcliffe: University of Oxford and The British Library (1998).
- Pope, C., S. Ziedland, and N. Mays. "Qualitative research in health care: Analysing qualitative data. 320." BMJ 8.320 (2000): p.7227.
- Bustos, Aurelia, et al. "Padchest: A large chest x-ray image dataset with multi-label annotated reports." Medical image analysis 66 (2020):p. 101797. https://doi.org/10.1016/j.media.2020.101797
- Sun, Wencheng, et al. "Data processing and text mining technologies on electronic medical records: a review." Journal of healthcare engineering 2018 (2018).
- Pinsonneault, Alain, et al. "Integrated health information technology and the quality of patient care: A natural experiment." Journal of Management Information Systems 34.2 (2017): p.457-486. https://doi.org/10.1080/07421222.2017.1334477
- Daraz, Lubna, et al. "Can patients trust online health information? A meta-narrative systematic review addressing the quality of health information on the internet." Journal of general internal medicine 34.9 (2019): 1884-1891. https://doi.org/10.1007/s11606-019-05109-0
- Al Aqeel, Sinaa, et al. "Readability of written medicine information materials in Arabic language: expert and consumer evaluation." BMC health services research 18.1 (2018): p.1-7. https://doi.org/10.1186/s12913-017-2770-6
- Kher, Akhil, Sandra Johnson, and Robert Griffith. "Readability assessment of online patient education material on congestive heart failure." Advances in preventive medicine 2017 (2017).
- Alotaibi, S., Alyahya, M., Al-Khalifa, H., Alageel, S., & Abanmy, N.. Readability of Arabic medicine information leaflets: a machine learning approach. Procedia Computer Science, 82 (2016), p. 122-126. https://doi.org/10.1016/j.procs.2016.04.017
- Albukhitan, Saeed, Ahmed Alnazer, and Tarek Helmy. "Semantic annotation of arabic web documents using deep learning." Procedia computer science 130 (2018): p.589-596. https://doi.org/10.1016/j.procs.2018.04.108
- Alalyani, Nada, and Souad Larabi Marie-Sainte. "NADA: New Arabic dataset for text classification." International Journal of Advanced Computer Science and Applications 9.9 (2018).
- Dukes, Kais, and Nizar Habash. "Morphological Annotation of Quranic Arabic." Lrec. 2010.
- Zeroual, Imad, and Abdelhak Lakhouaja. "A new Quranic Corpus rich in morphosyntactical information." International Journal of Speech Technology 19.2 (2016): p.339-346. https://doi.org/10.1007/s10772-016-9335-7
- Saad, Motaz K., and Wesam M. Ashour. "Osac: Open source arabic corpora." 6th ArchEng Int. Symposiums, EEECS. Vol. 10. 2010.
- Samy, Doaa, et al. "Medical Term Extraction in an Arabic Medical Corpus." LREC. 2012.
- Health, S. M. o. (2019). Awareness. Retrieved from https://www.moh.gov.sa/Pages/Default.asx
- Encyclopedia, King, A, (2019) https://kaahe.org/en-us/Pages/Home/Home.aspx
- Laboratories, A. B. M. (2019). Lab Tests Website. Retrieved from https://www.alborg.sa/ar/
- Blackman, Nicole J - M., and John J. Koval. "Interval estimation for Cohen's kappa as a measure of agreement." Statistics in medicine 19.5 (2000): p.723-741. https://doi.org/10.1002/(SICI)1097-0258(20000315)19:5<723::AID-SIM379>3.0.CO;2-A
- Bird, Steven, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. " O'Reilly Media, Inc.", 2009.
- Salloum, Said A., et al. "A survey of Arabic text mining." Intelligent Natural Language Processing: Trends and Applications. Springer, Cham, 2018. p.417-431.