참고문헌
- H. Zhu et al., 'Global Analysis of Protein Activities Using Proteome Chips', Science, vol. 293, no. 5537, pp. 2101-2105, Sep. 2001, doi: 10.1126/science.1062191.
- T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, 'A comprehensive two-hybrid analysis to explore the yeast protein interactome', PNAS, vol. 98, no. 8, pp. 4569-4574, Apr. 2001, doi: 10.1073/pnas.061034498.
- C. D. Nguyen, K. J. Gardiner, and K. J. Cios, 'Protein annotation from protein interaction networks and Gene Ontology', Journal of Biomedical Informatics, vol. 44, no. 5, pp. 824-829, Oct. 2011, doi: 10.1016/j.jbi.2011.04.010.
- T. S. Keshava Prasad et al., 'Human Protein Reference Database--2009 update', Nucleic Acids Research, vol. 37, no. Database, pp. D767-D772, Jan. 2009, doi: 10.1093/nar/gkn892.
- I. Xenarios, D. W. Rice, L. Salwinski, M. K. Baron, E. M. Marcotte, and D. Eisenberg, 'DIP: the Database of Interacting Proteins', Nucleic Acids Res, vol. 28, no. 1, pp. 289-291, Jan. 2000. https://doi.org/10.1093/nar/28.1.289
- B. Aranda et al., 'The IntAct molecular interaction database in 2010', Nucleic Acids Res., vol. 38, no. Database issue, pp. D525-531, Jan. 2010, doi: 10.1093/nar/gkp878.
- G. D. Bader, D. Betel, and C. W. Hogue, 'BIND: the biomolecular interaction network database', Nucleic acids research, vol. 31, no. 1, pp. 248-250, 2003. https://doi.org/10.1093/nar/gkg056
- K.-C. Chou, 'Pseudo Amino Acid Composition and its Applications in Bioinformatics, Proteomics and System Biology', Current Proteomics, vol. 6, no. 4, pp. 262-274, Dec. 2009, doi: 10.2174/157016409789973707.
- Y. Guo, L. Yu, Z. Wen, and M. Li, 'Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences', Nucleic Acids Res, vol. 36, no. 9, pp. 3025-3030, May 2008, doi: 10.1093/nar/gkn159.
- Z.-H. You, X. Li, and K. C. Chan, 'An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers', Neurocomputing, vol. 228, pp. 277-282, Mar. 2017, doi: 10.1016/j.neucom.2016.10.042.
- L. Wong, Z.-H. You, S. Li, Y.-A. Huang, and G. Liu, 'Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor', in International Conference on Intelligent Computing, 2015, pp. 713-720.
- X.-Y. Pan, Y.-N. Zhang, and H.-B. Shen, 'Large-Scale Prediction of Human Protein-Protein Interactions from Amino Acid Sequence Based on Latent Topic Features', J. Proteome Res., vol. 9, no. 10, pp. 4992-5001, Oct. 2010, doi: 10.1021/pr100618t.
- T. Beysolow II, Applied Natural Language Processing with Python: Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing. Berkeley, CA: Apress, 2018.
- Y. E. Goktepe and H. Kodaz, 'Prediction of Protein-Protein Interactions Using An Effective Sequence Based Combined Method', Neurocomputing, vol. 303, pp. 68-74, Aug. 2018, doi: 10.1016/j.neucom.2018.03.062.
- A. Sharma, J. Lyons, A. Dehzangi, and K. K. Paliwal, 'A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition', Journal of Theoretical Biology, vol. 320, pp. 41-46, Mar. 2013, doi: 10.1016/j.jtbi.2012.12.008.
- A. Dehzangi et al., 'PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction', Journal of Theoretical Biology, vol. 425, pp. 97-102, Jul. 2017, doi: 10.1016/j.jtbi.2017.05.005.
- M. Gribskov, A. D. McLachlan, and D. Eisenberg, 'Profile analysis: detection of distantly related proteins', PNAS, vol. 84, no. 13, pp. 4355-4358, Jul. 1987, doi: 10.1073/pnas.84.13.4355.
- C. N. Kopoin, Nt. Tchimou, B. K. Saha, and M. Babri, 'A Feature Extraction Method in Large Scale Prediction of Human Protein-Protein Interactions using Physicochemical Properties into Bi-gram', in 2020 IEEE International Conf on Natural and Engineering Sciences for Sahel's Sustainable Development - Impact of Big Data Application on Society and Environment (IBASE-BF), Feb. 2020, pp. 1-7, doi: 10.1109/IBASEBF48578.2020.9069594.
- G. D. Rose, A. R. Geselowitz, G. J. Lesser, R. H. Lee, and M. H. Zehfus, 'Hydrophobicity of amino acid residues in globular proteins', Science, vol. 229, no. 4716, pp. 834-838, Aug. 1985, doi: genetic. https://doi.org/10.1126/science.4023714
- J. Jia, Z. Liu, X. Xiao, B. Liu, and K.-C. Chou, 'Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition', Journal of Biomolecular Structure and Dynamics, vol. 34, no. 9, pp. 1946-1961, Sep. 2016, doi: 10.1080/07391102.2015.1095116.
- C. J. Shin, S. Wong, M. J. Davis, and M. A. Ragan, 'Protein-protein interaction as a predictor of subcellular location', BMC Syst Biol, vol. 3, no. 1, p. 28, Feb. 2009, doi: 10.1186/1752-0509-3-28.
- Y.-A. Huang, Z.-H. You, X. Chen, K. Chan, and X. Luo, 'Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding', BMC Bioinformatics, vol. 17, no. 1, p. 184, Dec. 2016, doi: 10.1186/s12859-016-1035-4.
- Z.-H. You, Y.-K. Lei, L. Zhu, J. Xia, and B. Wang, 'Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis', BMC Bioinformatics, vol. 14, no. S8, p. S10, May 2013, doi: 10.1186/1471-2105-14-S8-S10.
- S. Martin, D. Roe, and J.-L. Faulon, 'Predicting protein-protein interactions using signature products', Bioinformatics, vol. 21, no. 2, pp. 218-226, Jan. 2005, doi: 10.1093/bioinformatics/bth483.
- 'Database resources of the National Center for Biotechnology Information', Nucleic Acids Res, vol. 44, no. Database issue, pp. D7-D19, Jan. 2016, doi: 10.1093/nar/gkv1290.
- P.-A. Binz et al., 'Proteomics standards initiative extended FASTA format', Journal of proteome research, vol. 18, no. 6, pp. 2686-2692, 2019. https://doi.org/10.1021/acs.jproteome.9b00064
- K.-C. Chou, 'Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes', Bioinformatics, vol. 21, no. 1, pp. 10-19, Jan. 2005, doi: 10.1093/bioinformatics/bth466.
- Z.-H. You, J.-Z. Yu, L. Zhu, S. Li, and Z.-K. Wen, 'A MapReduce based parallel SVM for large-scale predicting protein-protein interactions', Neurocomputing, vol. 145, pp. 37-43, Dec. 2014. https://doi.org/10.1016/j.neucom.2014.05.072
- S. B. Rakhmetulayeva, K. S. Duisebekova, A. M. Mamyrbekov, D. K. Kozhamzharova, G. N. Astaubayeva, and K. Stamkulova, 'Application of Classification Algorithm Based on SVM for Determining the Effectiveness of Treatment of Tuberculosis', Procedia Computer Science, vol. 130, pp. 231-238, Jan. 2018, doi: 10.1016/j.procs.2018.04.034.
- A. J. Gonzalez and L. Liao, 'Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines', BMC Bioinformatics, vol. 11, no. 1, p. 537, Oct. 2010, doi: 10.1186/1471-2105-11-537.
- A. Ben-Hur and W. S. Noble, 'Kernel methods for predicting protein-protein interactions', Bioinformatics, vol. 21, no. suppl_1, pp. i38-i46, Jun. 2005, doi: 10.1093/bioinformatics/bti1016.
- Z.-H. You, L. Zhu, C.-H. Zheng, H.-J. Yu, S.-P. Deng, and Z. Ji, 'Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set', BMC Bioinformatics, vol. 15, no. 15, p. S9, Dec. 2014, doi: 10.1186/1471-2105-15-S15-S9.
- Y. Yao, X. Du, Y. Diao, and H. Zhu, 'An integration of deep learning with feature embedding for protein-protein interaction prediction', PeerJ, vol. 7, p. e7126, Jun. 2019, doi: 10.7717/peerj.7126.