Acknowledgement
The authors would like to acknowledge that they have used cervical cancer (Risk Factors) Data Set. It is obtained from the UCI machine learning repository. The link of the dataset used for experimenting is https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29.
References
- Arora, M., Dhawan, S. and Singh, K. (2019), Advances in Intelligent Systems and Computing, Springer Nature, Singapore.
- Arora, M., Dhawan, S. and Singh, K., (2018), "Deep learning: overview, architecture, framework & applications", Int. J. Latest Trends Eng. Technol., 10(1), 379-384. http://dx.doi.org/10.21172/1.101.69.
- Arora, M., Dhawan, S. and Singh. K. (2020), "Data driven prognosis of cervical cancer using class balancing and machine learning techniques", EAI Endorsed Transactions Energy Web, 1-9. https://doi: 10.4108/eai.13-7-2018.164264.
- Arora, M., Dhawan, S., Singh, K. (2018), "Deep neural network for transformation zone classification", In First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 213-216, https://doi.org/10.1109/ICSCCC.2018.8703327.
- Breiman, L. (2001), "Random forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Ceylan, Z. and Pekel, E. (2017), "Comparison of multi-label classification methods for prediagnosis of cervical cancer", Int. J. Intell. Syst. Appl. Eng., 5(4), 232-236. https://doi.org/10.18201/ijisae.2017533896.
- Chang, C.C., Cheng, S.L., Lu, C.J. and Liao, K.H. (2013), "Prediction of recurrence in patients with cervical cancer using MARS and classification", Int. J. Machine Learning Comput., 3(1), 75-78. https://doi.org/10.7763/IJMLC.2013.V3.276.
- Dua, D. and Graff, C. (2019), UCI Machine Learning Repository Irvine, University of California, School of Information and Computer Science. http://archive.ics.uci.edu/ml.
- E.F. Krause (1987), Taxicab Geometry: An Adventure in Non-Euclidean Geometry. California: Addison-Wesley.
- Eaton, L. (2003), "World cancer rates set to double by 2020", BMJ 326(7392). https://doi:10.1136/bmj.326.7392.728/a.
- Fernandes, K., Cardoso, J.S. and Fernandes, J. (2017), "Transfer learning with partial observability applied to cervical cancer screening", In Iberian conference on pattern recognition and image analysis, https://doi.org/10.1007/978-3-319-58838-4_27.
- Fernandes, K., Chicco, D., Cardoso, J.S. and Fernandes, J. (2018), "Supervised deep learning embeddings for the prediction of cervical cancer diagnosis", Peer J. Comput. Sci., 4(e154). https://doi.org/10.7717/peerj-cs.154.
- Gurusamy, K. and Krishnaveni, K. (2016), "Feature extraction and feature set selection for cervical cancer diagnosis", Indian J. Sci. Technol., 9(19), 1-7. https://doi.org/10.17485/ijst/2016/v9i19/93881.
- Jain, S., Sood, M. and Pal, S. (2020), Advances in Computational Intelligence Techniques, Springer, Singapore.
- Kahng, J., Kim, E.H., Kim, H.G. and Lee, W. (2015), "Development of a cervical cancer progress prediction tool for human papillomavirus-positive Koreans: A support vector machine-based approach", J. Int. Medic. Res., 43(4), 518-525. https://doi.org/10.1177/0300060515577846.
- Kaur, R. and Ginige, J.A. (2018), "Comparative evaluation of accuracy of selected machine learning classification techniques for diagnosis of cancer: a data mining approach", World Academy of Sci. Eng. Technol.: Int. J. Biomedic. Biolo. Eng., 12(2), 19-25. http://scholar.waset.org/1307-6892/10008834.
- Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., and Fotiadis, D.I. (2014), "Machine learning applications in cancer prognosis and prediction", Comput. Struct. Biotechnol. J., 13, 8-17. https://doi.org/10.1016/j.csbj.2014.11.005.
- Kurniawati, Y.E., Permanasari, A.E. and Fauziati, S. (2016), "Comparative study on data mining classification methods for cervical cancer prediction using pap smear results", 1st International Conference on Biomedical Engineering (IBIOMED), 1-5. https://doi.org/10.1109/ibiomed.2016.7869827.
- Kusy, M., Obrzut, B. and Kluska, J. (2013), "Application of gene expression programming and neural networks to predict adverse events of radical hysterectomy in cervical cancer patients", Medic. Biologic. Eng. Comput., 51, 1357-1365. https://doi.org/10.1007/s11517-013-1108-8.
- Mangasarian Olvi, L., Nick Street, W. and Wolberg, H. (1995), "Breast cancer diagnosis and prognosis via linear programming", Operat. Res., 43(4), 570-577. https://doi.org/10.1287/opre.43.4.570.
- Mortazavi, A. (2019), "Interactive fuzzy search algorithm: A new self-adaptive hybrid optimization algorithm", Eng. Appl. Artificial Intell., 81, 270-282. https://doi.org/10.1016/j.engappai.2019.03.005.
- Mortazavi, A. (2021), "Bayesian interactive search algorithm: A new probabilistic swarm intelligence tested on mathematical and structural optimization problems", Advan. Eng. Softw., 155, 102994. https://doi.org/10.1016/j.advengsoft.2021.102994.
- Mortazavi, A. and Vedat T. (2021), "Solving of distinct engineering optimization problems using metaheuristic algorithms", In Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications, 111-136.
- Obrzut, B., Kusy, M., Semczuk, A., Obrzut, M. and Kluska, J. (2017), "Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods", BMC Cancer, 17(1), 840. https://doi.org/10.1186/s12885-017-3806-3.
- Parikh, D. and Menon, V. (2019), "Machine learning applied to cervical cancer data", Int. J. Math. Sci. Comput., 5(1), 53-64. https://doi.org10.5815/ijmsc.2019.01.05.
- Paul E. Black (2020), "Manhattan distance", In Dictionary of Algorithms and Data Structures, https://www.nist.gov/dads/HTML/manhattanDistance.html
- Paul E. Black, (2020), "Euclidean distance", In Dictionary of Algorithms and Data Structures, https://www.nist.gov/dads/HTML/euclidndstnc.html.
- Sarwar, A., Ali, M., Suri, J. and Sharma, V. (2015), "Performance evaluation of machine learning techniques for screening of cervical cancer", 2nd International Conference on "Computing for Sustainable Global Development, New Delhi (INDIA).
- Suykens, J. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neur. Proc. Lett., 9(1), 293-300. https://doi.org/10.1023/A:1018628609742.
- Vapnik, V. (1998), Statistical Learning Theory, John Wiley, New York.
- Vapnik, V. (2013), The Nature of Statistical Learning Theory, Springer science & business media.
- Vidya, R. and Nasira, G.M. (2016), "Prediction of cervical cancer using hybrid induction technique: A solution for human hereditary disease patterns", Indian J. Sci. Technol., 9(30), 1-10. https://doi.org/10.17485/ijst/2016/v9i30/82085.
- Wenying Y., Xin, G., Tongqing, X., Xiping, Y. and Maohong, J. (2019), "Cervical cancer risk prediction model and analysis of risk factors based on machine learning", In Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology (ICBBT'19), Association for Computing Machinery, New York, USA, 50-54. https://doi.org/10.1145/3340074.3340078.
- Wu, W.M. and Zhou, H. (2017), "Data-driven diagnosis of cervical cancer with support vector machine-based approaches", IEEE Access, 5(1), 25189-25195. https://doi.org/10.1109/ACCESS.2017.2763984.