Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B06041177).
References
- ACI-ASCE Committee 445 (2010), Further Examples for the Design of Structural Concrete with Strut-and-Tie Models; SP-273, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
- Alshegeir, A. and Ramirez, J.A. (1992), "Computer graphics in detailing strut-tie models", J. Comput. Civil Eng., ASCE, 6(2), 220-232. https://doi.org/10.1061/(ASCE)0887-3801(1992)6:2(220).
- American Association of State Highway and Transportation Officials (2014), AASHTO LRFD Bridge Design Specifications, Washington D.C., U.S.A.
- American Association of State Highway and Transportation Officials (2018), AASHTO LRFD Bridge Design Specifications, Washington D.C., U.S.A.
- American Concrete Institute (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (318R-19), Farmington Hills, U.S.A.
- Bouadi, A. (1989), "Behavior of CCT Nodes in Structural Concrete Strut-and-Tie Models", Master Thesis, University of Texas at Austin, Austin, U.S.A.
- Chetchotisak, P., Yindeesuk, S. and Teerawong, J. (2017), "Interactive strut-and-tie-model for shear strength prediction of RC pile caps", Comput. Concrete, 20(3), 329-338. http://doi.org/10.12989/cac.2017.20.3.329.
- European Committee for Standardization (2004), Eurocode 2: Design of Concrete Structures, Brussels, Belgium.
- FIB (International Federation for Structural Concrete) (2010), CEP-FIP Model Code 2010, Comite EuroInternational du Beton, Lausanne, Switzerland.
- Gen, M., Cheng, R., and Lin, L. (2008), Network Models and Optimization, Springer, Switzerland.
- Hassoun, M.N. and Al-Manaseer, A. (2020), Structural Concrete: Theory and Design, John Wiley & Sons, Inc., U.S.A.
- Jhong, J.T., Wang, L., Deng, P. and Zhou Man (2017), "A new evaluation procedure for the strut-and-tie models of the disturbed regions of reinforced concrete structures", Eng. Struct., 148, 660-672. https://doi.org/10.1016/j.engstruct.2017.07.012
- KCI Shear-Torsion Committee (2012), Examples for Strut-Tie Model Design of Structural Concrete, Kimoon-Dang, Seoul, Korea.
- Liang, Q.Q., Uy, B. and Steven, G.P. (2002), "Performance-based optimization for strut-and-tie modeling of structural Concrete", J. Struct. Engineering, ASCE, 128(6), 815-823. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:6(815).
- Liang, Q.Q., Xie, Y.M. and Steven, G.P. (2000), "Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary", ACI Struct. J., 97(2), 322-330. http://www.concrete.org/PUBS/JOURNALS/SJHOME.ASP.
- MacGregor, J.G. (2019), Reinforced Concrete - Mechanics and Design, Prentice Hall, Inc., Upper Saddle River, U.S.A.
- Mish, K., Nobari, F. and Liu, D. (1995), "An interactive graphical strut-and-tie application", Proceedings of the Second Congress on Computing in Civil Engineering, American Society of Civil Engineers, New York, 788-795.
- Ozkal, F.M. and Uysal, H. (2017), "Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach", Comput. Concrete, 19(5), 589-597. https://doi.org/10.12989/cac.2017.19.5.589.
- Parol, J., Al-Qazweeni, J. and Salam, S.A. (2018), "Analysis of reinforced concrete corbel beams using Strut and Tie models", Comput. Concrete, 21(1), 95-102. https://doi.org/10.12989/cac.2018.21.1.095.
- Schlaich, J., Schaefer, K. and Jennewein, M. (1987), "Towards a consistent design of structural concrete", J. Prestressed Concrete Institute, 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150.
- Tech Soft 3D (1997), "HOOPS 3D Graphics System", Bend, Oregon.
- Tjhin, T.N. and Kuchma, D.A. (2002), "Computer-based tools for design by strut-and-tie method: advances and challenges", ACI Struct. J., 99(5), 586-594.
- Tran, C.T.C., Nguyen, X.H., Nguyen, H.C. and Vu, N.S. (2020), "Strut-and-tie model for shear capacity of corroded reinforced concrete columns", Advan. Concrete Construct., 10(3), 185-193. https://doi.org/10.12989/acc.2020.10.3.185.
- Xia, Y., Langelaar, M. and Nendriks, M.A.N. (2020), "A critical evaluation of topology optimization results for strut-and-tie modeling of reinforced concrete", Comput. Aided Civil Infrastruct. Eng., 35(8), 850-869. https://doi.org/10.1111/mice.12537.
- Yun, Y.M. (2000), "Computer graphics for nonlinear strut-tie model approach", J. Comput. Civil Eng., ASCE, 14(2), 127-133. https://doi.org/10.1061/(ASCE)0887-3801(2000)14:2(127).
- Yun, Y.M. (2000), "Nonlinear strut-tie model approach for structural concrete", ACI Struct. J., 97(4), 581-590.
- Yun, Y.M. (2006), "Strength of two-dimensional nodal zones in strut-tie models", J. Struct. Eng., ASCE, 132(11), 1764-1783. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1764).
- Yun, Y.M. (2020), "Numerical method for effective strength of nodal zones in two-dimensional strut-and-tie models", J. Korea Concrete Institute, 32(4), 359-369. https://doi.org/10.4334 /JKCI.2020.32.4.359. https://doi.org/10.4334/JKCI.2020.32.4.359
- Yun, Y.M. and Ramirez, J.A. (2016), "Strength of concrete struts in three-dimensional strut-tie models", J. Struct. Eng., ASCE, 142(11). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001584.
- Yun, Y.M., Kim, B.H. and Ramirez, J.A. (2018), "Three-dimensional grid strut-and-tie model approach in structural concrete design", ACI Struct. J., 115(1), 15-26. https://doi.org/10.14359/51700791.