DOI QR코드

DOI QR Code

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete

다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향

  • Received : 2021.02.15
  • Accepted : 2021.03.30
  • Published : 2021.06.30

Abstract

In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

본 연구에서는 기존의 낮은 순환골재 품질을 개선하기 위해 다중 회전 날개 및 가이드 판을 순환골재 파쇄장치에 설치하였다. 신기술의 파쇄 효율을 평가하기 위해 시뮬레이션 분석을 실시한 결과, 가이드판을 설치함에 따라 파쇄 드럼 내부에서 대부분의 투입물이 파쇄되고, 다중 회전 날개 및 가이드판이 파쇄물의 상승 회류를 유도하기 때문에 파쇄 효율이 높은 것으로 나타났다. 이를 통하여, 다중 회전 날개와 가이드 판을 적용한 파쇄장치는 기존 순환골재 파쇄장치보다 파쇄효율 및 경제성이 우수한 것으로 확인되었다. 또한, 신기술로 생산한 순환골재는 기존 순환골재에 비해 골재 표면에 부착된 시멘트 페이스트 및 모르타르의 양이 적었으며, 이를 혼입한 콘크리트에서 역학적 성능 및 탄성계수 저하 현상이 감소하는 것으로 확인되었다. 하지만, 신기술로 생산한 순환골재는 표면에 남아있는 미세 시멘트 페이스트 및 모르타르로 인해 콘크리트의 탄산화 저항성이 천연골재 수준으로 개선되지는 못하였다. 따라서, 순환골재를 혼입한 콘크리트의 내구성 저하 현상을 개선하기 위한 장치 개선 또는 결합재 개발 등의 추가 연구 및 실험이 필요하다고 판단된다.

Keywords

Acknowledgement

본 논문은 국토교통부 국토교통기술촉진연구사업(과제번호: 20CTAP-C157880-01)의 연구비 지원에 의해 수행되었습니다.

References

  1. Berndt, M.L. (2009). Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate, Construction and Building Materials, 23(7), 2606-2613. https://doi.org/10.1016/j.conbuildmat.2009.02.011
  2. Choi, W.Y., Lee, S.H., Kim, S.H. (2017). A comparative study on the quality of recycled aggregate for concrete by crushing method, Journal of the Korean Recycled Construction Resources Institute, 5(2), 121-129. https://doi.org/10.14190/JRCR.2017.5.2.121
  3. Etxeberria, M., Vazquez, E., Mari, A., Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete, Cement and Concrete Research, 37(5), 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002
  4. Han, S.K., Park, O.Y., Jang, H.O. (2020). A technology to remove organic matters and improve segregation of recycled aggregates by using rotational rakes separator and tornado vacuum separator, Korean Recycled Construction Resources Institute, 15(2), 39-44.
  5. Japanese Institute of Architecture. (2004). Durability Design Construction Guidelines for Reinforced Concrete Structures, 99, 92-108.
  6. Kim, D.G., Yang, K.H., Seo, E.A., Yoon, H.S. (2020). Evaluation on the physical properties and paste adhesion of recycled coarse aggregates produced through different dry treatments, Journal of the Korea Concrete Institute, 32(2), 185-191. https://doi.org/10.4334/JKCI.2020.32.2.185
  7. Kishitani, K. (1963). Durability of muscle concrete, Kajima Construction Technology Research Institute Publishing Department, 65-70.
  8. Kong, D., Lei, T., Zheng, J., Ma, C., Jiang, J., Jiang, J. (2010). Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete, Journal of Construction and Building Materials, 24(5), 701-708. https://doi.org/10.1016/j.conbuildmat.2009.10.038
  9. Kwan, W.H., Ramli, M., Kam, K.J., Sulieman, M.Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties, Construction and Building Materials, 26(1), 565-573. https://doi.org/10.1016/j.conbuildmat.2011.06.059
  10. Kwon, S.J., Lim, H.S., Lee, H.S, Lim, M.K. (2018). Mechanical properties of recycled coarse aggregate concrete using two-stage mixing approach, Journal of The Korea Institute for Structural Maintenance and Inspection, 22(4), 60-67. https://doi.org/10.11112/JKSMI.2018.22.4.060
  11. Lee, S.Y., Kim, G.Y., Yoon, M.H., Na, C.S., Lee, S.K., Shin, S.G., Nam, J.S. (2019). Monitoring on compressive strength and carbonation of reinforced concrete structure with 100% recycled aggregate, Journal of the Korea Institute of Building Construction, 19(5), 383-389. https://doi.org/10.5345/JKIBC.2019.19.5.383
  12. Moon, K., Park, S., Kim, S. (2019). Compressive strength of concrete due to moisture conditions of recycled coarse aggregates and curing conditions, Journal of the Korean Society of Civil Engineers, 39(4), 485-492.
  13. Na, C.S., Kim, Y.R. (2016). Production technology for concrete recycling coarse aggregate by multiple-stage rotor and guide board installed to vertical type impact crusher, Korean Recycled Construction Resources Institute, 11(3), 29-31.
  14. Padmini, A.K., Ramamurthy, K., Mathews, M.S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete, Construction and Building Materials, 23(2), 829-836. https://doi.org/10.1016/j.conbuildmat.2008.03.006
  15. Thomas, C., Setien, J., Polanco, J., Alaejos, P., De Juan, M.S. (2013). Durability of recycled aggregate concrete, Construction and Building Materials, 40, 1054-1065. https://doi.org/10.1016/j.conbuildmat.2012.11.106
  16. Yoda, K. (1979). Failure due to the occurrence of cracks 3 Durability decrease, Architecture Magazine. 94. 16-17.