DOI QR코드

DOI QR Code

Diaporthe taoicola and D. siamensis, Two New Records on Citrus sinensis in China

  • Cui, Meng Jiao (Department of Plant Protection, College of Agriculture, Yangtze University) ;
  • Wei, Xin (Department of Plant Protection, College of Agriculture, Yangtze University) ;
  • Xia, Peng Liang (Enshi Tobacco Company of Hubei Province) ;
  • Yi, Ji Ping (Zigui Plant Protection Station) ;
  • Yu, Zhi He (Department of Applied Microbiology, College of Life Sciences, Yangtze University) ;
  • Deng, Jian Xin (Department of Plant Protection, College of Agriculture, Yangtze University) ;
  • Li, Qi Li (Institute of Plant Protection, Guangxi Academy of Agricultural Sciences and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests)
  • Received : 2020.12.03
  • Accepted : 2021.03.30
  • Published : 2021.06.30

Abstract

Two Diaporthe species isolated from fruit of Citrus sinensis in China were characterized based on morphology and multilocus phylogeny of ITS, tef1, and tub2 gene sequences. The phylogeny indicated that the two species match Diaporthe taoicola and D. siamensis. A critical examination of phenotypic characteristics confirmed the phylogenetic results. Diaporthe taoicola was morphologically characterized by producing Alpha conidia with tapering toward both ends. Meanwhile, D. siamensis produced cylindrical or ellipsoidal Alpha conidia with two oil drops. Pathogenicity tests revealed that both species were pathogenic to fruit of C. sinensis. To our knowledge, the two species were firstly reported on Citrus sinensis in China.

Keywords

Acknowledgement

The research was supported by Guangxi Key Laboratory of Biology for Crop Disease and Insect Pests [2019-KF-01].

References

  1. Rauf A, Uddin G, Ali J. Phytochemical analysis and radical scavenging profile of juices of Citrus sinensis, Citrus anrantifolia, and Citrus limonum. Org Med Chem Lett. 2014;4(1):5. https://doi.org/10.1186/2191-2858-4-5
  2. Santos J, Phillips A. Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers. 2009;34:111-125.
  3. Gomes RR, Glienke C, Videira SIR, et al. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia. 2013;31:1-41. https://doi.org/10.3767/003158513X666844
  4. Gao YHui, Su Y, Sun W, et al. Diaporthe species occurring on Lithocarpus glabra in China, with descriptions of five new species. Fungal Biol. 2015;119(5):295-6146. https://doi.org/10.1016/j.funbio.2014.06.006
  5. Guo YS, Crous PW, Bai Q, et al. High diversity of Diaporthe species associated with pear shoot canker in China. Persoonia. 2020;45(1):132-162. https://doi.org/10.3767/persoonia.2020.45.05
  6. Mostert L, Kang JC, Crous PW. Phomopsis saccharata sp. nov., causing a canker and die-back disease of Protea repens in South Africa. Sydowia. 2011;53:227-235.
  7. Udayanga D, Liu X, McKenzie EHC, et al. The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Diversity. 2011;50(1):189-225. https://doi.org/10.1007/s13225-011-0126-9
  8. Du ZHUO, Fan X-L, Hyde KD, et al. Phylogeny and morphology reveal two new species of Diaporthe from Betula spp. in China. Phytotaxa. 2016;269(2):90-102. https://doi.org/10.11646/phytotaxa.269.2.2
  9. Diaz GA, Latorre BA, Lolas M, et al. Identification and characterization of Diaporthe ambigua, D. australafricana, D. novem, and D. rudis causing a postharvest fruit rot in kiwifruit. Plant Dis. 2017;101(8):1402-1410. https://doi.org/10.1094/PDIS-10-16-1535-RE
  10. Timmer LW, Garney SM, Graham J. Compendium of citrus diseases. 2nd ed. St. Paul, Minnesota, USA: APS Press; 2000. 19-21.
  11. Udayanga D, Castlebury LA, Rossman AY, et al. Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia. 2014;32:83-101. https://doi.org/10.3767/003158514X679984
  12. Huang F, Udayanga D, Wang XH, et al. Endophytic Diaporthe associated with citrus: a phylogenetic reassessment with seven new species from china. Fungal Biol. 2015;119(5):331-347. https://doi.org/10.1016/j.funbio.2015.02.006
  13. Santos JM, Correia VG, Phillips AJL. Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol. 2010;114(2-3):255-270. https://doi.org/10.1016/j.funbio.2010.01.007
  14. Rehner SA, Uecker FA. Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Can J Bot. 1994;72(11):1666-1674. https://doi.org/10.1139/b94-204
  15. Huang F, Hou X, Dewdney M, et al. Diaporthe species occurring on citrus in China. Fungal Diversity. 2013;61(1):237-250. https://doi.org/10.1007/s13225-013-0245-6
  16. Dissanayake AJ, Zhang W, Liu M, et al. Diaporthe species associated with peach tree dieback in Hubei. China. Mycosphere. 2017;8(5):533-549. https://doi.org/10.5943/mycosphere/8/5/2
  17. Yang Q, Fan XL, Vladimiro G, et al. High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MC. 2018;39:97-149. https://doi.org/10.3897/mycokeys.39.26914
  18. Cenis JL. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res. 1992;20(9):2380. https://doi.org/10.1093/nar/20.9.2380
  19. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applica-tions., San Diego, California: Academic Press; 1990. 315-322.
  20. Carbone I, Kohn LM. Method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.2307/3761358
  21. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Am Soc Microbiol. 1995;61:1323-1330.
  22. Tibpromma S, Hyde KD, Bhat JD, et al. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern. MycoKeys. 2018;33:25-67. https://doi.org/10.3897/mycokeys.33.23670
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Evolutionary Gene-tics. Analysis. 2016;33:1870-1874.
  24. Swofford DL. Phylogenetic analysis using parsimony. Version 4b10. Sunderland, MA: Sinauer Associates; 2002.
  25. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  26. ThailNylander JAA. MrModelTest v. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. 2004.
  27. Rambaut A, Drummond A. FigTree v.1.3.1. Institute of Evolutionary Biology. Edinburgh, UK: University of Edinburgh; 2010.
  28. Udayanga D, Liua X, Mckenzie EHC, et al. Multi-locus phylogeny reveals three new species of Diaporthe from Thailand. Cryptogamie Mycologie. 2012; 33(3):295-309. https://doi.org/10.7872/crym.v33.iss3.2012.295
  29. Gao YH, Liu F, Duan WJ, et al. Diaporthe is para-phyletic. Ima Fungus. 2017;8(1):153-187. https://doi.org/10.5598/imafungus.2017.08.01.11
  30. Bai Q, Zhai LF, Chen XR, et al. Biological and molecular characterization of five Phompsis species associated with pear shoot canker in China. Plant Disease. 2015;99(12):1704-1712. https://doi.org/10.1094/PDIS-03-15-0259-RE
  31. Hu DM, Cai L, Hyde KD. Three new ascomycetes from freshwater in China. Mycologia. 2012;104(6):1478-1489. https://doi.org/10.3852/11-430
  32. Yang Q, Fan XL, Du Z. Diaporthe juglandicola sp. nov. (Diaporthales, Ascomycetes), evidenced by morphological characters and phylogenetic analysis. Mycosphere. 2017;8(5):817-826. https://doi.org/10.5943/mycosphere/8/5/3
  33. Crous PW, Shivas RG, Quaedvlieg W, et al. Fungal planet description sheets: 214. Persoonia. 2014;32(1):184-280. https://doi.org/10.3767/003158514X682395
  34. Fan XL, Hyde KD, Udayanga D, et al. Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycol Progress. 2015;14(10):82. https://doi.org/10.1007/s11557-015-1104-5
  35. Yang Q, Du Z, Tian CM. Phylogeny and morphology reveal two new species of Diaporthe from Traditional Chinese Medicine in Northeast China. Phytotaxa. 2018;336(2):159-170. https://doi.org/10.11646/phytotaxa.336.2.3
  36. Li Y, Tan P, Zhao DG. Diaporthe nobilis, a new record on Camellia sinensis in Guizhou Province. China. Mycosphere. 2017;8(1):1-8. https://doi.org/10.5943/mycosphere/8/1/1