Acknowledgement
The work was financially supported by a National Research Foundation of Korea (NRF) grant to HSP, funded by the Korean government [NRF-2020R1C1C1004473].
References
- Etxebeste O, Espeso EA. Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol. 2020;23(1):5-22. https://doi.org/10.1007/s10123-019-00064-6
- McCluskey K, Baker SE. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology. 2017;8:67-83. https://doi.org/10.1080/21501203.2017.1281849
- Adams TH, Wieser JK, Yu J-H. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998;62(1):35-54. https://doi.org/10.1128/mmbr.62.1.35-54.1998
- Dyer PS, O'Gorman CM. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev. 2012;36:165-192. https://doi.org/10.1111/j.1574-6976.2011.00308.x
- Krijgsheld P, Bleichrodt R, van Veluw GJ, et al. Development in Aspergillus. Stud Mycol. 2013;74:1-29. https://doi.org/10.3114/sim0006
- Park H-S, Yu J-H. Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol. 2012a;15:669-677. https://doi.org/10.1016/j.mib.2012.09.006
- Han KH. Molecular genetics of Emericella nidulans sexual development. Mycobiology. 2009;37:171-182. https://doi.org/10.4489/MYCO.2009.37.3.171
- Galagan JE, Calvo SE, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105-1115. https://doi.org/10.1038/nature04341
- Ahmed YL, Gerke J, Park HS, et al. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kappaB. PLoS Biol. 2013;11:e1001750. https://doi.org/10.1371/journal.pbio.1001750
- Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev. 2012;36:1-24. https://doi.org/10.1111/j.1574-6976.2011.00285.x
- Bayram O, Krappmann S, Ni M, et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science. 2008;320:1504-1506. https://doi.org/10.1126/science.1155888
- Park HS, Yu YM, Lee MK, et al. Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci Rep. 2015;5:10199. https://doi.org/10.1038/srep10199
- Sarikaya Bayram O, Bayram O, Valerius O, et al. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 2010;6:e1001226. https://doi.org/10.1371/journal.pgen.1001226
- Wu MY, Mead ME, Lee MK, et al. Transcriptomic, protein-DNA interaction, and metabolomic studies of VosA, VelB, and WetA in Aspergillus nidulans asexual spores. mBio. 2021;12(1):e03128.
- Kim MJ, Jung WH, Son YE, et al. The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J Microbiol. 2019;57:893-899. https://doi.org/10.1007/s12275-019-9214-4
- Park HS, Lee MK, Kim SC, et al. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS One. 2017;12:e0177099. https://doi.org/10.1371/journal.pone.0177099
- Son YE, Cho HJ, Chen W, et al. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Curr Genet. 2020;66:621-633. https://doi.org/10.1007/s00294-020-01058-y
- Son YE, Cho HJ, Lee MK, et al. Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species. PLoS One. 2020;15:e0228643. https://doi.org/10.1371/journal.pone.0228643
- Shaaban MI, Bok JW, Lauer C, et al. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot Cell. 2010;9:1816-1824. https://doi.org/10.1128/EC.00189-10
- Kwon NJ, Shin KS, Yu JH. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol. 2010;47:981-993. https://doi.org/10.1016/j.fgb.2010.08.009
- Park H-S, Yu J-H. Multi-copy genetic screen in Aspergillus nidulans. Methods Mol Biol. 2012b;944:183-190. https://doi.org/10.1007/978-1-62703-122-6_13
- Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41(11):973-981. https://doi.org/10.1016/j.fgb.2004.08.001
- Park H-S, Ni M, Jeong KC, et al. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One. 2012;7:e45935. https://doi.org/10.1371/journal.pone.0045935
- Park HS, Nam TY, Han KH, et al. VelC positively controls sexual development in Aspergillus nidulans. PLoS One. 2014;9:e89883. https://doi.org/10.1371/journal.pone.0089883
- Semighini CP, Marins M, Goldman MH, et al. Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol. 2002;68:1351-1357. https://doi.org/10.1128/AEM.68.3.1351-1357.2002
- Song HY, Choi D, Han DM, et al. A novel rapid fungal promoter analysis system using the phosphopantetheinyl transferase gene, npgA, in Aspergillus nidulans. Mycobiology. 2018;46:429-439. https://doi.org/10.1080/12298093.2018.1548806
- Ni M, Yu J-H. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One. 2007;2:e970. https://doi.org/10.1371/journal.pone.0000970
- Kim MJ, Lee MK, Pham HQ, et al. The velvet regulator VosA governs survival and secondary metabolism of sexual spores in Aspergillus nidulans. Genes. 2020;11(1):103. https://doi.org/10.3390/genes11010103
- Son SH, Son YE, Cho HJ, et al. Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillus nidulans. Sci Rep. 2020a;10:6094. https://doi.org/10.1038/s41598-020-63300-4
- Park H-S, Yu J-H. Velvet regulators in Aspergillus spp. Microbiol Biotechnol Lett. 2016;44(4):409-419. https://doi.org/10.4014/mbl.1607.07007
- Fillinger S, Chaveroche MK, van Dijck P, et al. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology. 2001;147:1851-1862. https://doi.org/10.1099/00221287-147-7-1851
- Thammahong A, Puttikamonkul S, Perfect JR, et al. Central role of the trehalose biosynthesis pathway in the pathogenesis of human fungal infections: opportunities and challenges for therapeutic development. Microbiol Mol Biol Rev. 2017;81(2):e00053.