DOI QR코드

DOI QR Code

Unveiling the Functions of the VosA-VelB Target Gene vidD in Aspergillus nidulans

  • Son, Ye-Eun (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Park, Hee-Soo (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2021.03.04
  • Accepted : 2021.05.03
  • Published : 2021.06.30

Abstract

The velvet regulators VosA and VelB are primarily involved in spore maturation and dormancy. Previous studies found that the VosA-VelB hetero-complex coordinates certain target genes that are related to fungal differentiation and conidial maturation in Aspergillus nidulans. Here, we characterized the VosA/VelB-inhibited developmental gene vidD in A. nidulans. Phenotypic analyses demonstrated that the vidD deleted mutant exhibited defect fungal growth, a reduced number of conidia, and delayed formation of sexual fruiting bodies. The deletion of vidD decreased the amount of conidial trehalose, increased the sensitivity against heat stress, and reduced the conidial viability. Moreover, the absence of vidD resulted in increased production of sterigmatocystin. Together, these results show that VidD is required for proper fungal growth, development, and sterigmatocystin production in A. nidulans.

Keywords

Acknowledgement

The work was financially supported by a National Research Foundation of Korea (NRF) grant to HSP, funded by the Korean government [NRF-2020R1C1C1004473].

References

  1. Etxebeste O, Espeso EA. Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol. 2020;23(1):5-22. https://doi.org/10.1007/s10123-019-00064-6
  2. McCluskey K, Baker SE. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology. 2017;8:67-83. https://doi.org/10.1080/21501203.2017.1281849
  3. Adams TH, Wieser JK, Yu J-H. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998;62(1):35-54. https://doi.org/10.1128/mmbr.62.1.35-54.1998
  4. Dyer PS, O'Gorman CM. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev. 2012;36:165-192. https://doi.org/10.1111/j.1574-6976.2011.00308.x
  5. Krijgsheld P, Bleichrodt R, van Veluw GJ, et al. Development in Aspergillus. Stud Mycol. 2013;74:1-29. https://doi.org/10.3114/sim0006
  6. Park H-S, Yu J-H. Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol. 2012a;15:669-677. https://doi.org/10.1016/j.mib.2012.09.006
  7. Han KH. Molecular genetics of Emericella nidulans sexual development. Mycobiology. 2009;37:171-182. https://doi.org/10.4489/MYCO.2009.37.3.171
  8. Galagan JE, Calvo SE, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105-1115. https://doi.org/10.1038/nature04341
  9. Ahmed YL, Gerke J, Park HS, et al. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kappaB. PLoS Biol. 2013;11:e1001750. https://doi.org/10.1371/journal.pbio.1001750
  10. Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev. 2012;36:1-24. https://doi.org/10.1111/j.1574-6976.2011.00285.x
  11. Bayram O, Krappmann S, Ni M, et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science. 2008;320:1504-1506. https://doi.org/10.1126/science.1155888
  12. Park HS, Yu YM, Lee MK, et al. Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci Rep. 2015;5:10199. https://doi.org/10.1038/srep10199
  13. Sarikaya Bayram O, Bayram O, Valerius O, et al. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 2010;6:e1001226. https://doi.org/10.1371/journal.pgen.1001226
  14. Wu MY, Mead ME, Lee MK, et al. Transcriptomic, protein-DNA interaction, and metabolomic studies of VosA, VelB, and WetA in Aspergillus nidulans asexual spores. mBio. 2021;12(1):e03128.
  15. Kim MJ, Jung WH, Son YE, et al. The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J Microbiol. 2019;57:893-899. https://doi.org/10.1007/s12275-019-9214-4
  16. Park HS, Lee MK, Kim SC, et al. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS One. 2017;12:e0177099. https://doi.org/10.1371/journal.pone.0177099
  17. Son YE, Cho HJ, Chen W, et al. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Curr Genet. 2020;66:621-633. https://doi.org/10.1007/s00294-020-01058-y
  18. Son YE, Cho HJ, Lee MK, et al. Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species. PLoS One. 2020;15:e0228643. https://doi.org/10.1371/journal.pone.0228643
  19. Shaaban MI, Bok JW, Lauer C, et al. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot Cell. 2010;9:1816-1824. https://doi.org/10.1128/EC.00189-10
  20. Kwon NJ, Shin KS, Yu JH. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol. 2010;47:981-993. https://doi.org/10.1016/j.fgb.2010.08.009
  21. Park H-S, Yu J-H. Multi-copy genetic screen in Aspergillus nidulans. Methods Mol Biol. 2012b;944:183-190. https://doi.org/10.1007/978-1-62703-122-6_13
  22. Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41(11):973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  23. Park H-S, Ni M, Jeong KC, et al. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One. 2012;7:e45935. https://doi.org/10.1371/journal.pone.0045935
  24. Park HS, Nam TY, Han KH, et al. VelC positively controls sexual development in Aspergillus nidulans. PLoS One. 2014;9:e89883. https://doi.org/10.1371/journal.pone.0089883
  25. Semighini CP, Marins M, Goldman MH, et al. Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol. 2002;68:1351-1357. https://doi.org/10.1128/AEM.68.3.1351-1357.2002
  26. Song HY, Choi D, Han DM, et al. A novel rapid fungal promoter analysis system using the phosphopantetheinyl transferase gene, npgA, in Aspergillus nidulans. Mycobiology. 2018;46:429-439. https://doi.org/10.1080/12298093.2018.1548806
  27. Ni M, Yu J-H. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One. 2007;2:e970. https://doi.org/10.1371/journal.pone.0000970
  28. Kim MJ, Lee MK, Pham HQ, et al. The velvet regulator VosA governs survival and secondary metabolism of sexual spores in Aspergillus nidulans. Genes. 2020;11(1):103. https://doi.org/10.3390/genes11010103
  29. Son SH, Son YE, Cho HJ, et al. Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillus nidulans. Sci Rep. 2020a;10:6094. https://doi.org/10.1038/s41598-020-63300-4
  30. Park H-S, Yu J-H. Velvet regulators in Aspergillus spp. Microbiol Biotechnol Lett. 2016;44(4):409-419. https://doi.org/10.4014/mbl.1607.07007
  31. Fillinger S, Chaveroche MK, van Dijck P, et al. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology. 2001;147:1851-1862. https://doi.org/10.1099/00221287-147-7-1851
  32. Thammahong A, Puttikamonkul S, Perfect JR, et al. Central role of the trehalose biosynthesis pathway in the pathogenesis of human fungal infections: opportunities and challenges for therapeutic development. Microbiol Mol Biol Rev. 2017;81(2):e00053.