참고문헌
- A. O'Halloran, F. O'Malley, and P. McHugh, "A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges", J. Appl. Phys., 104, 071101 (2008). https://doi.org/10.1063/1.2981642
- Y. B. Cohen, K. J. Kim, H. R. Choi, and J. D. W. Madden, "Electroactive Polymer Materials", Smart. Mater. Struct., 16, (2007).
- L. Chang, Y. Liu, Q. Yang, L. Yu, J. Liu, Z. Zhu, P. Lu, Y. Wu, and Y. Hu, "Ionic Electroactive Polymers Used in Bionic Robots: A Review", J. Bionic. Eng., 15, 765 (2018). https://doi.org/10.1007/s42235-018-0065-1
- J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl, S. Nowak, E. Orselli, X. Quan, D. Schapeler, W. Sutherland, and J. Wagner, "Electroactive Polymers: Developments of and Perspectives for Dielectric Elastomers", Angew. Chem. Int. Ed., 52, 9409 (2013). https://doi.org/10.1002/anie.201301918
- W. Kaal, and S. Herold, "Electroactive Polymer Actuators in Dynamic Applications". IEEE. ASME. Trans. Mechatron., 16, 24 (2011). https://doi.org/10.1109/TMECH.2010.2089529
- L. J. Romasanta, M. A. L. Manchado, and R. Verdejo, "Increasing the Performance of Dielectric Elastomer Actuators: A Review from the Materials Perspective", Prog. Polym. Sci., 51, 188 (2015). https://doi.org/10.1016/j.progpolymsci.2015.08.002
- Y. Zhao, L. J. Yin, S. L. Zhong, J. W. Zha, and Z. M. Dang, "Review of Dielectric Elastomers for Actuators, Generators and Sensors", IET. Nanodielectr., 3, 99 (2020). https://doi.org/10.1049/iet-nde.2019.0045
- U. Gupta, L. Qin, Y. Wang, H. Godaba, and J. Zhu, "Soft Robots Based on Dielectric Elastomer Actuators: A Review", Smart. Master. Struct., 28 (2019).
- F. Carpi, S. Bauer, and D. D. Rossi, "Stretching Dielectric Elastomer Performance", Science, 330, 1759 (2010). https://doi.org/10.1126/science.1194773
- H. Shigemune, S. Sugano, J. Nishitani, M. Yamauchi, N. Hosoya, S. Hashimoto, and S. Maeda, "Dielectric Elastomer Actuators with Carbon Nanotube Electrodes Painted with a Soft Brush", Acuators., 51, 7 (2018).
- F. Carpi, C. Salaris, and D. D. Rossi, "Folded Dielectric Elastomer Actuators", Smart. Mater. Struct., 16, S300 (2007). https://doi.org/10.1088/0964-1726/16/2/S15
- M. W. M. Tan, G. Thangavel, and P. S. Lee, "Enhancing Dynamic Actuation Performance of Dielectric Elastomer Actuators by Tuning Viscoelastic Effects with Polar Cross-linking", NPG. Asia. Mater., 11, 62 (2019). https://doi.org/10.1038/s41427-019-0147-5
- S. Jiang, L. Jin, H. Hou, and L. Zhang, "Polymer-Based Multifunctional Nanocomposites and Their Applications", pp. 201-243, Higher Education Press, 2019.
- X. Hao, "A Review on the Dielectric Materials for High Energy-Storage Application", J. Adv. Dielectr., 3, 1330001 (2013). https://doi.org/10.1142/S2010135X13300016
- V. O. Sherman, A. K. Tagantesv, and N. Setter, "FerroelectricDielectric Tunable Composites", J. Appl. Phys., 99, 074104 (2006). https://doi.org/10.1063/1.2186004
- L. Liu, Y. Lei, Z. Zhang, J. Liu, S. Lv, and Z. Guo, "Fabrication of PDA@SiO2@rGO/PDMS Dielectric Elastomer Composites with good Electromechanical Properties", React. Funct. Polym., 154, 104656 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104656
- B. Kussmaul, S. Risse, G. Kofod, R. Wache, M. Wegener, D. N. Mccarthy, H. Kruger, and R. Gerhard, "Enhancement of Dielectric Permittivity and Electromechanical Response in Silicone Elastomers: Molecular Grafting of Organic Dipoles to the Macromolecular Network", Adv. Funct. Mater., 21, 4589 (2011). https://doi.org/10.1002/adfm.201100884
- M. R. Kashani, S. Javadi, and N. Gharavi, "Dielectric Properties of Silicone Rubber-Titanium Dioxide Composites Prepared by Dielectrophoretic Assembly of Filler Particles", Smart. Mater. Struct., 19, 035019 (2010). https://doi.org/10.1088/0964-1726/19/3/035019
- H. Sun, X. Liu, B. Yu, Z. Feng, N. Ning, G. H. Hu, M. Tian, and L. Zhang, "Simultaneously Improved Dielectric and Mechanical Properties of Silicone Elastomer by Designing a Dual Crosslinking Network", Polym. Chem., 10, 633 (2019). https://doi.org/10.1039/C8PY01763H
- M. P. Sarmad, E. Chehrazi, M. Noroozi, M. Raef, M. R. Kashani, and M. A. H. Baian, "Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites", ACS. Appl. Electron. Mater., 1, 198 (2019). https://doi.org/10.1021/acsaelm.8b00042
- L. Xiong, S. Zheng, Z. Xu, Z. Liu, W. Yang, and M. Yang, "Enhanced Performance of Porous Silicone-Based Dielectric Elastomeric Composites by Low Filler Content of Ag@SiO2 Core-Shell Nanoparticles", Nanocomposites, 5, 238 (2019).
- R. Manna and S. K. Srivastava, "Fabrication of Functionalized Graphene Filled Carboxylated Nitrile Rubber Nanocomposites as Flexible Dielectric Materials", Mater. Chem. Front., 1, 780 (2017). https://doi.org/10.1039/C6QM00025H
- S. Zhu, J. Guo, and J. Zhang, "Enhancement of Mechanical Strength Associated with Interfacial Tension Between Barium Titanate and Acrylonitrile-Butadiene Rubber with Different Acrylonitrile Contents by Surface Modification", J. Appl. Polym. Sci., 135, 45936 (2018). https://doi.org/10.1002/app.45936
- T. Chen, J. Qiu, K. Zhu, and J. Li, "Electro-Mechanical Performance of Polyurethane Dielectric Elastomer Flexible Micro-Actuator Composite Modified with Titanium DioxideGraphene Hybrid Fillers", Mater. Des., 90, 1069 (2016). https://doi.org/10.1016/j.matdes.2015.11.068
- S. Liu, M. Tian, B. Yan, L. Zhang, T. Nishi, and N. Ning, "High Performance Dielectric Elastomers by Partially Reduced Graphene Oxide and Disruption of Hydrogen Bonding of Polyurethanes", Polymer, 56, 375 (2015). https://doi.org/10.1016/j.polymer.2014.11.012
- X. Zhang, Y. Ma, C. Zhao, and W. Yang, "High Dielectric Constant and Low Dielectric Loss Hybrid Nanocomposites Fabricated with Ferroelectric Polymer Matrix and BaTiO3 Nanofibers Modified with Perfluoroalkylsilane", Appl. Surf. Sci., 305, 531 (2014). https://doi.org/10.1016/j.apsusc.2014.03.131
- J. K. Yuan, W. L. Li, S. H. Yao, Y. Q. Lin, A. Sylvestre, and J. Bai, "High Dielectric Permittivity and Low Percolation Threshold in Polymer Composites Based on SiC-Carbon Nanotubes Micro/Nano Hybrid", Appl. Phys. Lett., 98, 032901 (2011). https://doi.org/10.1063/1.3544942
- L. L. Sun, B. Li, Y. Zhao, G. Mitchell, and W. H. Zhong, "Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution", Nanotechnology, 21, 305702 (2010). https://doi.org/10.1088/0957-4484/21/30/305702
- Prateek, R. Bhunia, S. Siddiqui, A. Grag, and R. K. Gupta, "Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO2-BaTiO3-TiO2 Nanofillers in PVDF-Based Thin-Film Polymer Nanocomposites", ACS. Appl. Mater. Interfaces, 11, 14329 (2019). https://doi.org/10.1021/acsami.9b01359
- R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, "Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion", Proceedings of SPIE, 4695, 126 (2002).
- M. Y. Jung, N. H. Chuc, J. W. Kim, I. M. Koo, K. M. Jung, Y. K. Lee, J. D. Nam, H. R. Choi, and J. C. Koo, "Fabrication and Characterization of Linear Motion Dielectric Elastomer Actuators", Proc. of SPIE, 6168, 616824-1 (2006).
- Q. Pei, M. Rosenthal, S. Stanford, H. Prahlad, and R. Pelrine, "Multiple-Degrees-of-Freedom Electroelastomer Roll Actuators", Smart. Mater. Struct., 13, N86 (2004). https://doi.org/10.1088/0964-1726/13/5/N03
- S. Shian, R. M. Diebold, and D. R. Clarke, "Tunable Lenses Using Transparent Dielectric Elastomer Actuators", Opt. Express, 21, 8669 (2013). https://doi.org/10.1364/OE.21.008669
- R. D. Kornbluh, R. Pelrine, H. Prahlad, A. W. Foy, B. Mccoy, S. Kim, J. Eckerle, and T. Low, "Dielectric Elastomers: Stretching the Capabilities of Energy Harvesting", MRS. Bull., 37, 246 (2012). https://doi.org/10.1557/mrs.2012.41
- R. D. Kornbluh, R. Pelrine, H. Prahlad, A. W. Foy, B. Mccoy, S. Kim, J. Eckerle, and T. Low, "From Boots to Buoys: Promises and Challenges of Dielectric Elastomer Energy Harvesting", Proc. of. SPIE, 7976, 67 (2012).