DOI QR코드

DOI QR Code

A Study on the Circuit Design Methodology and Performance Evaluation for Hybrid Gate Driver

하이브리드 게이트 드라이버를 위한 회로 디자인 방법과 성능 평가에 관한 연구

  • Cho, Geunho (Dept. of Electronics Engineering, Seokyeong University)
  • Received : 2021.06.04
  • Accepted : 2021.06.24
  • Published : 2021.06.30

Abstract

As Head-Mounted Displays(HMDs), which are mainly used to maximize realism in games and videos, have experienced increased demand and expanded scope of use in education and training, there is growing interest in methods to enhance the performance of conventional HMDs. In this study, a methodology to utilize Carbon NanoTubes(CNTs) to improve the performance of gate drivers that send control signals to each pixel circuit of the HMD is discussed. This paper proposes a new circuit design method that replaces the transistors constituting the buffer part of the conventional gate driver with transistors incorporating CNTs and compare the performance of the suggested gate drive with that of a gate driver comprising only conventional transistors via simulations. According to the simulation results, by including CNTs in the gate driver, the output voltage can be increased by approximately 0.3V compared to the conventional gate driver high voltage(1.1V) at a speed of 12.5 GHz and the gate width also can be reduced by up to 20 times.

과거 주로 게임과 동영상 재생에 있어 리얼함을 극대화하기 위해 사용되었던 HMD(Head Mount Display)의 수요가 증가하고, 그 활용 범위가 교육과 훈련 등으로 확대되면서, 기존 HMD의 성능을 향상시킬 수 있는 방안에 대한 관심이 높아지고 있다. 본 논문에서는 HMD의 각 화소 회로에 제어 신호를 보내는 gate driver의 성능을 향상시키기 위해 CNT를 포함한 트랜지스터를 활용하는 방법에 대해 논하고자 한다. 기존 gate driver의 버퍼부를 구성하는 트랜지스터를 CNT를 포함한 트랜지스터로 교체하는 회로 설계 방법을 제안하고, 그 성능을 회로 시뮬레이션을 통해 기존 트랜지스터로만 구성된 gate driver의 성능과 비교해 보고자 한다. 시뮬레이션 결과, gate driver에 CNT를 포함할 경우 12.5 GHz의 속도로 기존 gate driver 대비 약 0.3V 증가된 출력 전압(1.1V)을 얻을 수 있었으며, 최대 20배의 gate width를 줄일 수 있었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No.2018R1C1B5086081) The EDA tool was supported by the IC Design Education Center(IDEC), Korea

References

  1. G. Nageswara Rao, K. Aruna Kumari, D. Ravi Shankar, and K. G. Kharade, "A comparative study of augmented reality-based head-worn display devices," Mater. Today Proc., 2021
  2. H. G. Kenngott et al., "IMHOTEP: cross-rofessional evaluation of a three dimensional virtual reality system for interactive surgical operation planning, tumor board discussion and immersive training for complex liver surgery in a headounted display," Surg. Endosc., 2021. DOI: 10.1007/s00464-020-08246-4
  3. Y. Chen et al., "An 18.6-㎛-Pitch Gate Driver Using a-IGZO TFTs for Ultrahigh-Definition AR/VR Displays," in IEEE Transactions on Electron Devices, vol.67, no.11, pp.4929-4933, 2020. DOI: 10.1109/TED.2020.3023069
  4. J. Kim and T. Park, "The Onset Threshold of Cybersickness in Constant and Accelerating Optical Flow," Applied Sciences, vol.10, no.21. 2020. DOI: 10.3390/app10217808.
  5. D. Ji et al., "Recent progress in the development of backplane thin film transistors for information displays," J. Inf. Disp., vol.22, no.1, pp.1-11, 2021. DOI: 10.1080/15980316.2020.1818641.
  6. J. Deng and H.-.P. Wong, "A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application-Part I: Model of the Intrinsic Channel Region," in IEEE Transactions on Electron Devices, vol. 54, no.12, pp.3186-3194, 2007. DOI: 10.1109/TED.2007.909030
  7. J. Deng and H.-.P. Wong, "A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application-Part II: Full Device Model and Circuit Performance Benchmarking," in IEEE Transactions on Electron Devices, vol.54, no.12, pp.3195-3205, 2007. DOI: 10.1109/TED.2007.909043
  8. G. Hills et al., "Modern microprocessor built from complementary carbon nanotube transistors," Nature, vol.572, no.7771, pp.595-602, 2019. DOI: 10.1038/s41586-019-1493-8.
  9. D. Ji et al., "Recent progress in the development of backplane thin film transistors for information displays," J. Inf. Disp., vol.22, no.1, pp.1-11, 2021. DOI: 10.1080/15980316.2020.1818641
  10. C. Zhao et al., "Strengthened Comple-mentary Metal-Oxide-Semiconductor Logic for Small-Band-Gap Semiconductor-Based High-Performance and Low-Power Appli-cation," ACS Nano, vol.14, no.11, pp.15267-15275, 2020. https://doi.org/10.1021/acsnano.0c05554
  11. Y. Wang et al., "Applying Viscous Shear Stress to Align Single-Walled Carbon Nanotubes," in 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), pp.1-4, 2020. DOI: 10.1109/EDTM47692.2020.9117997
  12. L. Liu et al., "Aligned, high-density semi-conducting carbon nanotube arrays for high-performance electronics," Science, vol.368, no.6493, pp.850-856, 2020. DOI: 10.1126/science.aba5980
  13. Y. Lee et al., "Hybrid integration of carbon nanotube and amorphous IGZO thin-film transistors," AIP Adv., vol.10, no.2, pp.25131, 2020. https://doi.org/10.1063/1.5139085
  14. PTM Models, http://ptm.asu.edu/ CNFET Models. http://nano.stanford.edu/models.php
  15. A. S. Vidhyadharan and S. Vidhyadharan, "An ultra-low-power CNFET based dual VDD ternary dynamic Half Adder," Microelectronics J., vol.107, pp.104961, 2021. https://doi.org/10.1016/j.mejo.2020.104961
  16. I. Mamatov, Y. Ozcelep, and F. Kacar, "Voltage differencing buffered amplifier based low power, high frequency and universal filters using 32 nm CNTFET technology," Microelectronics J., vol.107, pp.104948, 2021. DOI: 10.1016/j.mejo.2020.104948
  17. Z. Zareei, M. Bagherizadeh, M. Shafiabadi, and Y. Safaei Mehrabani, "Design of efficient approximate 1-bit Full Adder cells using CNFET technology applicable in motion detector systems," Microelectronics J., vol.108, p.104962, 2021. DOI: 10.1016/j.mejo.2020.104962
  18. J. M. Rabaey et al., "Digital Integrated Circuits: A Design Perspective., 2nd ed," Englewood Cliffs, NJ, USA: Prentice-Hall, 2007.
  19. G. Cho and F. Lombardi, "Circuit-Level Simulation of a CNTFET With Unevenly Positioned CNTs by Linear Programming," in IEEE Transactions on Device and Materials Reliability, vol.14, no.1, pp.234-244, 2014. DOI: 10.1109/TDMR.2013.2279154