DOI QR코드

DOI QR Code

Characterization of compounds and quantitative analysis of oleuropein in commercial olive leaf extracts

상업용 올리브 잎 추출물의 화합물 특성과 이들의 oleuropein 함량 비교분석

  • Park, Mi Hyeon (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Doo-Young (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Arbianto, Alfan Danny (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jung-Hee (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Seong Mi (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Hyung Won (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Sei-Ryang (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2021.02.18
  • Accepted : 2021.03.12
  • Published : 2021.06.30

Abstract

Olive (Olea europaea L.) leaves, a raw material for health functional foods and cosmetics have abundant polyphenols including oleuropein (major bioactive compound) with various biological activities: antioxidant, antibacterial, antiviral, anticancer activity, and inhibit platelet activation. Oleuropein has been reported as skin protectant, antioxidant, anti-ageing, anti-cancer, anti-inflammation, anti-atherogenic, anti-viral, and anti-microbial activity. Despite oleuropein is the important compound in olive leaves, there is still no quantitative approach to reveal oleuropein content in commercial products. Therefore, a validated method of analysis has to develop for oleuropein. In this study, the components and oleuropein content in 10 types of products were analyzed using a developed method with ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry, charge of aerosol detector, and photodiode array. The total of 18 compounds including iridoids (1, 3, 4, 14, and 16-18), coumarin (2), phenylethanoids (5, 9, and 11), flavonoids (6-8, 10, 12, and 13), lignan (15), were tentatively identified in the leaves extract based high resolution mass spectrometry data, and the content of oleuropein in each product was almost identical between two detection methods. The oleuropein in three commercial product (A, G, H) was contained more over the suggested content, and it of five products (B, E, H, I, J) were analyzed within 5-10% error range. However, the two products (C, D) were found far lower than suggested contents. This study provides that analytical results of oleuropein could be a potential information for the quality control of leaf extract for a manufactured functional food.

올리브 (Olea europaea L.) 잎은 풍부한 폴리 페놀을 함유하고 있으며, 이는 항산화, 항균, 항 바이러스, 항암 활성을 연관시키고 혈소판 활성화를 억제하는 것으로 보고 되어있다. 올리브 잎은 건강기능성식품 및 기능성 화장품의 원료로 상업적으로 사용되고 있으며, 이러한 건강상의 이점은 올리브 잎의 주요 생리활성 물질인 oleuropein와 관련이 있다. Oleuropein은 항산화, 항노화, 항염증, 항암, 항미생물, 항바이러스, 항죽상동맥혈증, 지질 저하 효과, 혈당 저하 효과, 피부 보호 효과가 보고되어 있다. oleuropein이 올리브 잎의 중요한 화합물 임에도 불구하고 상업용 제품에서 oleuropein 함량을 밝히는 정량적 접근 방법은 아직 없다. 본 연구에서는 UPLC-QTof/MS, PDA, CAD로 개발된 방법을 이용하여 10개의 상업용 올리브 잎 추출물의 성분 및 oleuropein 함량을 분석 하였다. Iridoids (1, 3, 4, 14, and 16-18), coumarin (2), phenylethanoids (5, 9, and 11), flavonoids (6-8, 10, 12, and 13), lignan (15)을 포함한 총 18종의 화합물이 올리브 잎에서 예상되었다. 총 10종의 올리브 잎 추출물 분석은 3종의 제품(A, G, H)에서 제품에서 제시한 oleuropein 함량보다 높게, 5종의 제품(B, E, H, I, J)에서 5-10%의 오차범위로 나타났고 C, D에서 함량 미달로 검출되었다. 본 연구에서 oleuropein의 함량분석이 올리브 잎의 품질 관리에 도움이 될 수 있음을 판단하였다.

Keywords

Acknowledgement

본 연구는 KRIBB 기관고유사업의 연구비 지원에 의해 수행되었고 올리브 잎 수입품을 공시해주신 (주)아주약품에 감사를 드립니다.

References

  1. Madrid (2021) World's olive oil production has tripled. IOC Publishing international olive oil. https://www.internationaloliveoil.org/worlds-oliveoil-production-has-tripled/. Accessed 04 January 2021
  2. Molina-Alcaide E, Yanez-Ruiz DR (2008) Potential use of olive byproducts in ruminant feeding: A review. Anim Feed Sci Technol 147: 247-264. doi: 10.1016/j.anifeedsci.2007.09.021
  3. Erbay Z, Icier F (2010) The importance and potential uses of olive leaves. Food reviews international 26(4): 319-334 https://doi.org/10.1080/87559129.2010.496021
  4. Ministry of Food and Drug Safety (2016) Health functional food functional raw material certification status. Publication registration number 11-1471000-000047-14, Ministry of Food and Drug Safety, Korea, pp 10, 102
  5. Singh I, Mok M, Christensen AM, Turner AH, Hawley JA (2008) The effects of polyphenols in olive leaves on platelet function. Nutr Metab Cardiovasc Dis 18: 127-132. doi: 10.1016/j.numecd.2006.09.001
  6. Bouaziz M, Fki I, Jemai H, Ayadi M, Sayadi S (2008) Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food chem 108: 253-262. doi: 10.1016/j.foodchem.2007.10.074
  7. Pereira AP, Ferreira IC, Marcelino F, Valentao P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereira JA (2007) Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrancosa) leaves. Molecules 12: 1153-1162. doi: 10.3390/12051153
  8. Khemakhem I, Abdelhedi O, Trigui I, Ayadi MA, Bouaziz M (2018) Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int J Biol Macromol 106: 425-432. doi: j.ijbiomac.2017.08.037 https://doi.org/10.1016/j.ijbiomac.2017.08.037
  9. Boss A, Bishop KS, Marlow G, Barnett MPG, Ferguson LR (2016) Evidence to support the anti-cancer effect of olive leaf extract and future directions. Nutrients 8:513. doi: 10.3390/nu8080513
  10. Salah MB, Abdelmelek H, Abderraba M (2012) Study of phenolic composition and biological activities assessment of olive leaves from different varieties grown in Tunisia. Med chem 2(5): 107-111. doi: 10.4172/2161-0444.1000124
  11. Michel T, Khlif I, Kanakis P, Termentzi A, Allouche N, Halabalaki M, Skaltsounis AL (2015) UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem Lett 11: 424-439. doi: 10.1016/j.phytol.2014.12.020
  12. Omar SH (2010) Oleuropein in olive and its pharmacological effects. Sci Pharm 78: 133-154. doi: 10.3797/scipharm.0912-18
  13. Sonda A, Maria del MC, Boutheina G, Antonio SC, Mohamed B (2016) RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product "wood" and its comparison with leaf counterpart. Phytochem Anal 28: 217-229. doi: 10.1002/pca.2664
  14. Ventura G, Calvano CD, Abbattista R, Bianco M, Ceglie CD, Losito I, Palmisano F, Cataldi TRI (2019) Characterization of bioactive and nutraceutical compounds occurring in the olive oil processing wastes. Rapid Commun Mass Spectrom 33(21): 1670-1681. doi: 10.1002/rcm.8514
  15. Malapert A, Reboul E, Loonis M, Dangles O, Tomao V (2018) Direct and rapid profiling of biophenols in olive pomace by UHPLC-DAD-MS. Food Anal Methods 11: 1001-1010 https://doi.org/10.1007/s12161-017-1064-2
  16. Bouaziz M, Sayadi S (2005) Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur J Lipid Sci Technol 107: 497-504. doi: 10.1002/ejlt.200501166
  17. El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67(11): 632-638. doi: 10.1111/j.1753-4887.2009.00248.x
  18. Zang Y, Igarashi K, Li Y (2016) Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Biosci Biotechnol Biochem 80(8): 1580-1586. doi: 10.1080/09168451.2015.1116928
  19. Tiana X, Peng Z, Luo S, Zhang S, Li B, Zhou C, Fan H (2019) Aesculin protects against DSS-Induced colitis though activating PPARγ and inhibiting NF-κB pathway. Eur J Pharmacol 857: 172453. doi: 10.1016/j.ejphar.2019.172453
  20. Cardinali A, Pati S, Minervini F, D'Antuono I, Linsalata V, Lattanzio V (2012) Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J Agric Food Chem 60: 1822-1829. doi: 10.1021/jf204001p
  21. Chen RC, Su JH, Yang SM, Li J, Wang TJ, Zhou H (2002) Effect of isoverbascoside, a phenylpropanoid glycoside antioxidant, on proliferation and differentiation of human gastric cancer cell. Acta Pharmacol Sin 23(11): 997-1001
  22. Xie L, Guo Y, Cai B, Yang J (2013) Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity. Med Chem Res 22: 3372-3378 https://doi.org/10.1007/s00044-012-0352-z
  23. Eng QY, Thanikachalam PV, Ramamurthy S (2018) Molecular understanding of epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 210: 296-310. doi: 10.1016/j.jep.2017.08.035
  24. Zhang X, Li J, Li Y, Liu Z, Lin Y, Huang JA (2020) Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB/MITF signaling pathway in B16F10 melanoma cells. Fitoterapia 145: 104634. doi: 10.1016/j.fitote.2020.104634
  25. Li KK, Peng JM, Zhu W, Cheng BH, Li CM (2017) Gallocatechin gallate (GCG) inhibits 3T3-L1 differentiation and lipopolysaccharide induced inflammation through MAPK and NF-κB signaling. J Funct Foods 30: 159-167. doi: 10.1016/j.jff.2017.01.016
  26. Shalkami AS, Hassan MIA, Bakr AG (2018) Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis. Hum Exp Toxicol 37(1): 78-86. doi: 10.1177/0960327117694075