DOI QR코드

DOI QR Code

CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가

Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior

  • Choi, Ji-Su (Major of Material Engineering, Graduate School, Korea Maritime and Ocean University) ;
  • Park, Soo-Jeong (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University) ;
  • Kim, Yun-Hae (Major of Material Engineering, Graduate School, Korea Maritime and Ocean University)
  • 투고 : 2021.04.19
  • 심사 : 2021.05.24
  • 발행 : 2021.07.01

초록

유체 이송에 사용되는 강재 파이프는 신설과 도장, 또는 부식과 노후화로 인한 제반 시설 보수에 거대한 규모의 시간과 비용이 요구된다. 이에 본 연구에서는 강재 파이프의 대체재로, 내부식성과 내화학성이 우수한 탄소섬유강화복합재료(Carbon Fiber Reinforced Plastic, CFRP) 파이프 구조의 최적화 설계를 수행하였다. 헬리컬 패턴 표면에 후프 패턴을 혼합적층하여 내구성을 향상시켰으며, 수분 환경에서의 에폭시 흡습 현상을 억제하기 위해, 할로이사이트 나노튜브(Halloysite Nanotube, HNT)를 첨가하였다. HNT/CFRP 파이프는 필라멘트 와인딩 공정으로 제작하였으며, 기계적 물성 시험과 70℃ 고온 증류수 환경하에서 흡습 시험을 진행하였다. 그 결과, 파이프 두께의 0.6%에 해당하는 후프 패턴의 적층 시, 가장 우수한 물성을 나타냈다. 또한 0.5 wt.% HNT 첨가 시 상대적으로 높은 내흡습성을 가졌으며, 층간 계면에서의 박리 현상이 지연되어 가장 낮은 강도 저하율을 보였다.

Currently, fluid transfer steel pipes take a lot of time and expense to maintain all facilities due to new construction and painting or corrosion and aging. Therefore, this study was conducted for designing a CFRP pipe structure with high corrosion resistance and chemical resistance as a substitute for steel pipes. The helical/hoop pattern was cross-laminated to improve durability, and HNT was added to suppress the moisture absorption phenomenon of the epoxy. The HNT/CFRP pipe was manufactured by a filament winding process, and performed a mechanical property test, and a moisture absorption test in distilled water at 70℃. As a result, the highest bending strength was obtained when the hoop pattern was laminated with a thickness equivalent to 0.6% of the pipe. The 0.5 wt% HNT specimen had the highest moisture absorption resistance. Also, the delamination phenomenon at the interlayer interface was delayed, resulting in the lowest strength reduction rate.

키워드

과제정보

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20005403').

참고문헌

  1. Anwar, M., Sukmaji, I.C., Wijang, W.R., and Diharjo, K., "Application of Carbon Fiber-based Composite for Electric Vehicle," Advanced Materials Research, Vol. 896, 2014, pp. 574-577. https://doi.org/10.4028/www.scientific.net/AMR.896.574
  2. Noh, H.S., and Koh, S.W., "A Study on the Fracture Toughness of Glass-Carbon Hybrid Composites," Bulletin of the Korean Society of Fisheries Technology, Vol. 28, No. 3, 1992, pp. 295-305.
  3. Meng, X.J., Wu, J.Q., Shi, Z.X., and Jiang, X.D., "Application of Carbon Fiber Reinforcement Technology in Pipe with Local Thinning Defects," Xiandai Huagong/Modern Chemical Industry, Vol. 35, No. 8, 2015, pp. 144-146.
  4. Imakita, A., Matsushita, H., Nagala, K., Kemmochi, K., Takahashi, J., Tsuda, H., and Maeda, Y., "Fatigue Strength of CFRP Pipes Using High Modulus Carbon Fiber," Proceedings of the Japan International Sampe Symposium, Vol. 5, 1997, pp. 993-998.
  5. Liu, Y.L., Li, W.Z., Xia, F.Y., Wang, B., Han, S.X., He, C.D., and Yu, B., "Research on Failure Mechanism of Carbon Fiber Composite Materials Basing on Acoustic Emission," Proceedings of the ASME Pressure Vessels and Piping Conference, Vol. 1B, 2013, pp. V01BT01A007.
  6. Hwang, T.K., Hong, C.S., and Kim, C.G., "Probabilistic Deformation and Strength Prediction dor a Filament Wound Pressure Vessel," Composite Part B, Vol. 34, No. 5, 2003, pp. 481-497. https://doi.org/10.1016/S1359-8368(03)00021-0
  7. Moon, C.J., Hur, S.H., Ahn, J.H., Kweon, J.H., Choi, J.H., Cho, J.R., and Cho, S.R., "Buckling of Filament Wound Thick Composite Cylinders under External Hydrostatic Pressure," Journal of the Korean Society for Aeronautical & Space Science, Vol. 37, No. 2, 2008, pp. 147-155. https://doi.org/10.5139/JKSAS.2009.37.2.147
  8. Ozbek, O., and Bozkurt, O.Y., "Hoop Tensile and Compression Behavior of Glass-carbon Intraply Hybrid Fiber Reinforced Filament Wound Composite Pipes," Materials Testing, Vol. 61, No. 8, 2019, pp. 763-769. https://doi.org/10.3139/120.111395
  9. Judd, N.C.W., "Absorption of Water into Carbon Fibre Composiotes," British Polymer Journal, Vol. 9, No. 1, 1977, pp. 36-40. https://doi.org/10.1002/pi.4980090106
  10. Miyano, Y., Nakada, M., and Sekinem, N., "Accelerated Testing for Long-term Durability of GFRP Laminates for Marine Use," Composite Part(B), Vol. 35, No. 6-8, 2004, pp. 497-502. https://doi.org/10.1016/j.compositesb.2003.11.006
  11. Liao, K., Schultheisz, C.R., and Hunston, D.L., "Effects of Environmental Aging on the Properties of Pultruded GFRP," Composite Part(B), Vol. 30, No. 5, 1999, pp. 485-493. https://doi.org/10.1016/S1359-8368(99)00013-X
  12. Kim, Y.H., Park, C.W., Jung, G.S., and Shin, S.J., "Environment Deterioration Characteristics of Polypropylene/Glass Fiber Composites under Moisture Absorption Environment," Journal of Ocean Engineering and Technology, Vol. 30, No. 6, 2016, pp. 520-525. https://doi.org/10.5574/KSOE.2016.30.6.520
  13. Liu, M., Jia, Z., Jia, D., and Zhou, C., "Recent Advance in Research on Halloysite Nanotubes-polymer Nanocomposite", Progress in Polymer Science, Vol. 39, No. 8, 2014, pp. 1498-1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004
  14. Crini, G., "Kinetic and Equilibrium Studies on the Removal of Cationic Dyes from Aqueous Solution by Adsorption onto a Cyclodextrin Polymer," Dyes and Pigments, Vol. 77, No. 2, 2008, pp. 415-426. https://doi.org/10.1016/j.dyepig.2007.07.001
  15. Lee, J.W., Park, S.J., and Kim, Y.H., "Improvement of Interfacial Adhesion of Incorporated Halloysite-nanotubes in Fiber-reinforced Epoxy-based Composites," Applied Sciences, Vol. 7, No. 5, 2017, pp. 441. https://doi.org/10.3390/app7050441
  16. Kim, G.S., and Park, G.S., "The Influence of Water Environment on the Mechanical Properties of Carbon/Epoxy Reinforced Composite Materials," Journal of the Korean Society of Marine Engineering, Vol. 17, No. 2, 1993, pp. 52-59.
  17. Kwon, D.J., Wang, Z.J., Choi, J.Y., Shin, P.S., and Park, J.M., "A Study of Damage Sensing and Repairing Effect of CNT Nano-composites," Composites Research, Vol. 27, No. 6, 2014, pp. 219-224. https://doi.org/10.7234/composres.2014.27.6.219
  18. Tan, X., Liu, Y., Gu, Y., Xu, Y., Zeng, G., Hu, X., Liu, S., Wang, X., Liu, S., and Li, J., "Biochar-based Nano-composites for the Decontamination of Wastewater: A Review," Bioresource Technology, Vol. 212, 2016, pp. 318-333. https://doi.org/10.1016/j.biortech.2016.04.093
  19. Choi, J.S., "Analysis of Nanoparticle Strengthening Effect and Water Absorption Behavior on Helical/Hoop Cross-laminated HNT-CFRP Composite Pipe Using Filament Winding," Master Thesis, Korea Maritime and Ocean University, Republic of Korea, 2017.