DOI QR코드

DOI QR Code

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation

소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상

  • Kim, Gwanghun (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Park, Jungbin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 김광훈 (전북대학교 신소재공학부) ;
  • 전준협 (전북대학교 신소재공학부) ;
  • 서남혁 (전북대학교 신소재공학부) ;
  • 박정빈 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Received : 2021.06.15
  • Accepted : 2021.06.25
  • Published : 2021.06.28

Abstract

The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.

Keywords

Acknowledgement

This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.

References

  1. H. K. D. H. Bhadeshia: Prog. Mater. Sci., 57 (2012) 268. https://doi.org/10.1016/j.pmatsci.2011.06.002
  2. H. Nakashima: NTN Tech. Rev., 76 (2008) 10.
  3. E. Yajima, T. Miyazaki, T. Sugiyama and H. Terajima: Trans. JIM, 15 (1974) 173. https://doi.org/10.2320/matertrans1960.15.173
  4. D. S. Park, S. J. Oh, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 63 (2018) 1479.
  5. J. Talonen, P. Nenonen, G. Pape and H. Hanninen: Metall. Trans. A, 36 (2005) 421. https://doi.org/10.1007/s11661-005-0313-y
  6. J. Jeon, S. Choi, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1249.
  7. S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382. https://doi.org/10.1016/j.msea.2018.04.051
  8. O. Grassel, L. Kruger, G. Frommeyer and L. W. Meyer: Int. J. Plast., 16 (2000) 1391. https://doi.org/10.1016/S0749-6419(00)00015-2
  9. S. J. Oh, B. C. Kim, M. C. Suh, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 64 (2019) 863.
  10. P. Jacques, J. Ladriere and F. Delannay: Metall. Mater. Trans. A, 32 (2001) 2759. https://doi.org/10.1007/s11661-001-1027-4
  11. N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S. J. Lee: J. Korean Powder Metall. Inst., 27 (2020) 373. https://doi.org/10.4150/KPMI.2020.27.5.373
  12. S. Lee, S. J. Lee and B. C. De Cooman: Scr. Mater., 65 (2011) 225. https://doi.org/10.1016/j.scriptamat.2011.04.010
  13. J. H. Ryu, S. S. Shin, B. R. Ryu, K. S. Kim, J. H. Jang, I. H. Oh, K. T. Kim and H. K. Park: J. Korean Powder Metall. Inst., 24 (2017) 302. https://doi.org/10.4150/KPMI.2017.24.4.302
  14. C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage and E. Hug: Mater. Sci. Eng. A, 665 (2016) 125. https://doi.org/10.1016/j.msea.2016.04.039
  15. S. J. Oh, J. H. Jun, M. H. Lee, I. J. Shon and S. J. Lee: Met. Mater. Int., 24 (2018) 597. https://doi.org/10.1007/s12540-018-0082-y
  16. O. E. Falodun, S. R. Oke, B. A. Obadele, A. M. Okoro and P. A. Olubambi: Met. Mater. Int., 28 (2019) 1.
  17. G. Kim, J. Jeon, N. Seo, S Choi, M. S. Oh, S. B. Son and S. J. Lee: Arch. Metall. Mater., 66 (2021) 759.
  18. G. K. Williamson and W. H. Hall: Acta Metall., 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6
  19. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  20. Y. H. Lee, X. K. Hyunh and J. S. Kim: J. Korean Powder Metall. Inst., 21 (2014) 382. https://doi.org/10.4150/KPMI.2014.21.5.382
  21. B. L. Averbach and M. Cohen: Trans. AIME., 196 (1948) 1.
  22. G. B. Olson and M. Cohen: Metall. Trans. A, 6A (1975) 791.
  23. J. Burke: Pergamon Press, Oxford, United Kingdom, (1965).
  24. O. Matsumura, Y. Sakuma and H. Takechi: Scr. Mater., 21 (1987) 1301.
  25. N. Tsuchida and Y. Tomota: Mater. Sci. Eng. A, 285 (2000) 345.
  26. D. Krizan and B. C. De Cooman: Steel Res. Int., 79 (2008) 513. https://doi.org/10.1002/srin.200806160
  27. L. Samek, E. De Moor, J. Penning and B. C. De Cooman: Metall. Mater. Trans. A, 37A (2006) 109.
  28. S. J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423. https://doi.org/10.3139/146.110882
  29. A. Bouziane, L. Boulanouar, M. W. Azizi, O. Keblouti and S. Belhadi: Struct. Eng. Mech., 66 (2018) 285. https://doi.org/10.12989/sem.2018.66.3.285
  30. K. Hokkirigawa and K. Kato: Wear, 123 (1988) 241. https://doi.org/10.1016/0043-1648(88)90102-0
  31. J. Zhao, T. S. Wang, B. Lv and F. C. Zhang: Mater. Sci. Eng. A, 628 (2015) 327. https://doi.org/10.1016/j.msea.2014.12.121
  32. M. W. Azizi, S. Belhadi, M. A. Yallese, T. Mabrouki and J. F. Rigal: J. Mech. Sci. Technol., 26 (2012) 4105. https://doi.org/10.1007/s12206-012-0885-6
  33. S. Li, Y. Su, X. Shu and J. Chen: Wear, 380-381 (2017) 146.
  34. R. Ramesh and R. Gnanamoorthy: Mater. Des., 28 (2007) 1447. https://doi.org/10.1016/j.matdes.2006.03.020
  35. X. H. Lu, D. S. Qian, W. Li and X. J. Jin: Mater. Lett., 234 (2019) 5. https://doi.org/10.1016/j.matlet.2018.09.017
  36. S. J. Lee: ISIJ. Int., 53 (2013) 1902. https://doi.org/10.2355/isijinternational.53.1902
  37. S. J. Oh, J. H. Jeon, I. J. Shon and S. J. Lee: J. Korean Powder Metall. Inst., 26 (2019) 389. https://doi.org/10.4150/KPMI.2019.26.5.389
  38. J. R. Weertman: Mater. Sci. Eng. A, 166 (1993) 161. https://doi.org/10.1016/0921-5093(93)90319-A