Acknowledgement
이 연구는 2021년도 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호:2020R1F1A104824112
References
- B. Fernandes, A. M. Gil, F. L. Bolina, & F. F. Tutikian (2017). Microstructure of Concrete Subjectied th Elevated Temperatures: Physico-Chemical Change and Analysis Techniques, Ibracon Structures and Materials Journal, 10(4), 838-863
- Glasser, F.P. (2017). The Role of Ca(OH)2 in Portland Cement Concretes, Material Science of Concrete, 37(2), 778-779
- Heo, Y. (2016). Development of the world's first source technology that can evaluate mid- to long-term secondary behavior prediction and residual durability of fire-damaged concrete structures within 30 days, Korea Institute of Construction Technology
- Jeong, E., Shin, M., Kang, H., & Kang, S. (2010). A Study on the Effects of Fire-Resistant Coating Materials for Prevention of Concrete Spalling, Journal of Kosham, 10(5), 9-15
- Kang, S., Na, S., Kim, K., & Shin, M. (2015). Pore Structure Change in Hardened Cement Exposed to Elevated Temperature, Journal of the Korean Ceramic Society, 52(1), pp. 48~55 https://doi.org/10.4191/kcers.2015.52.1.48
- Song, H., Ko, J., & Shinichi Sugahara (2008). Thermal Properties and Explosive Spalling for High Strength Concrete, Magazine of the KCI, 20(5), 26-32
- W. H. Johnson, & W. H. Parsons (1994). Thermal Expansion of Concrete Aggregate Materials, Journal of Research of the National Bureau of Standards, 32, 101-126 https://doi.org/10.6028/jres.032.002