DOI QR코드

DOI QR Code

2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations

  • Eun Ju Ha (Department of Radiology, Ajou University School of Medicine) ;
  • Sae Rom Chung (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Dong Gyu Na (Department of Radiology, GangNeung Asan Hospital, University of Ulsan College of Medicine) ;
  • Hye Shin Ahn (Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine) ;
  • Jin Chung (Department of Radiology, Ewha Womans University School of Medicine) ;
  • Ji Ye Lee (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Jeong Seon Park (Department of Radiology, Hanyang University College of Medicine, Hanyang University Hospital) ;
  • Roh-Eul Yoo (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Jung Hwan Baek (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Sun Mi Baek (Department of Radiology, Haeundae Sharing and Happiness Hospital) ;
  • Seong Whi Cho (Department of Radiology, Kangwon National University Hospital) ;
  • Yoon Jung Choi (Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Soo Yeon Hahn (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • So Lyung Jung (Department of Radiology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Ji-hoon Kim (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Seul Kee Kim (Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School) ;
  • Soo Jin Kim (Department of Radiology, New Korea Hospital) ;
  • Chang Yoon Lee (Department of Radiology, Research Institute and Hospital, National Cancer Center) ;
  • Ho Kyu Lee (Department of Radiology, Jeju National University) ;
  • Jeong Hyun Lee (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Young Hen Lee (Department of Radiology, Ansan Hospital, Korea University College of Medicine) ;
  • Hyun Kyung Lim (Department of Radiology, Soonchunhyang University Seoul Hospital) ;
  • Jung Hee Shin (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jung Suk Sim (Department of Radiology, Withsim Clinic) ;
  • Jin Young Sung (Department of Radiology and Thyroid Center, Daerim St. Mary's Hospital) ;
  • Jung Hyun Yoon (Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Miyoung Choi (Division for Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency)
  • 투고 : 2021.09.09
  • 심사 : 2021.09.10
  • 발행 : 2021.12.01

초록

Incidental thyroid nodules are commonly detected on ultrasonography (US). This has contributed to the rapidly rising incidence of low-risk papillary thyroid carcinoma over the last 20 years. The appropriate diagnosis and management of these patients is based on the risk factors related to the patients as well as the thyroid nodules. The Korean Society of Thyroid Radiology (KSThR) published consensus recommendations for US-based management of thyroid nodules in 2011 and revised them in 2016. These guidelines have been used as the standard guidelines in Korea. However, recent advances in the diagnosis and management of thyroid nodules have necessitated the revision of the original recommendations. The task force of the KSThR has revised the Korean Thyroid Imaging Reporting and Data System and recommendations for US lexicon, biopsy criteria, US criteria of extrathyroidal extension, optimal thyroid computed tomography protocol, and US follow-up of thyroid nodules before and after biopsy. The biopsy criteria were revised to reduce unnecessary biopsies for benign nodules while maintaining an appropriate sensitivity for the detection of malignant tumors in small (1-2 cm) thyroid nodules. The goal of these recommendations is to provide the optimal scientific evidence and expert opinion consensus regarding US-based diagnosis and management of thyroid nodules.

키워드

과제정보

This study was supported by a grant by 2021 Clinical Practice Guideline Research Fund by Korean Society of Radiology & Korean Society of Thyroid Radiology.

참고문헌

  1. Vander JB, Gaston EA, Dawber TR. The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med 1968;69:537-540  https://doi.org/10.7326/0003-4819-69-3-537
  2. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) 1977;7:481-493  https://doi.org/10.1111/j.1365-2265.1977.tb01340.x
  3. Brander A, Viikinkoski P, Nickels J, Kivisaari L. Thyroid gland: US screening in a random adult population. Radiology 1991;181:683-687  https://doi.org/10.1148/radiology.181.3.1947082
  4. Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med 1994;154:1838-1840  https://doi.org/10.1001/archinte.1994.00420160075010
  5. Tomimori E, Pedrinola F, Cavaliere H, Knobel M, Medeiros-Neto G. Prevalence of incidental thyroid disease in a relatively low iodine intake area. Thyroid 1995;5:273-276  https://doi.org/10.1089/thy.1995.5.273
  6. Gnarini VL, Brigante G, Della Valle E, Diazzi C, Madeo B, Carani C, et al. Very high prevalence of ultrasound thyroid scan abnormalities in healthy volunteers in Modena, Italy. J Endocrinol Invest 2013;36:722-728 
  7. Youserm DM, Huang T, Loevner LA, Langlotz CP. Clinical and economic impact of incidental thyroid lesions found with CT and MR. AJNR Am J Neuroradiol 1997;18:1423-1428 
  8. Yoon DY, Chang SK, Choi CS, Yun EJ, Seo YL, Nam ES, et al. The prevalence and significance of incidental thyroid nodules identified on computed tomography. J Comput Assist Tomogr 2008;32:810-815  https://doi.org/10.1097/RCT.0b013e318157fd38
  9. Shie P, Cardarelli R, Sprawls K, Fulda KG, Taur A. Systematic review: prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography. Nucl Med Commun 2009;30:742-748  https://doi.org/10.1097/MNM.0b013e32832ee09d
  10. Soelberg KK, Bonnema SJ, Brix TH, Hegedus L. Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography: a systematic review. Thyroid 2012;22:918-925  https://doi.org/10.1089/thy.2012.0005
  11. Furmanchuk AW, Roussak N, Ruchti C. Occult thyroid carcinomas in the region of Minsk, Belarus. An autopsy study of 215 patients. Histopathology 1993;23:319-325  https://doi.org/10.1111/j.1365-2559.1993.tb01214.x
  12. Belfiore A, La Rosa GL, La Porta GA, Giuffrida D, Milazzo G, Lupo L, et al. Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 1992;93:363-369  https://doi.org/10.1016/0002-9343(92)90164-7
  13. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:1941-1946  https://doi.org/10.1210/jcem.87.5.8504
  14. Nam-Goong IS, Kim HY, Gong G, Lee HK, Hong SJ, Kim WB, et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf) 2004;60:21-28  https://doi.org/10.1046/j.1365-2265.2003.01912.x
  15. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A "normal" finding in Finland. A systematic autopsy study. Cancer 1985;56:531-538  https://doi.org/10.1002/1097-0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2-3
  16. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980-2005. Cancer Epidemiol Biomarkers Prev 2009;18:784-791  https://doi.org/10.1158/1055-9965.EPI-08-0960
  17. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 2017;317:1338-1348  https://doi.org/10.1001/jama.2017.2719
  18. Ahn HS, Kim HJ, Welch HG. Korea's thyroid-cancer "epidemic"--screening and overdiagnosis. N Engl J Med 2014;371:1765-1767  https://doi.org/10.1056/NEJMp1409841
  19. Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med 2016;375:614-617  https://doi.org/10.1056/NEJMp1604412
  20. Seib CD, Sosa JA. Evolving understanding of the epidemiology of thyroid cancer. Endocrinol Metab Clin North Am 2019;48:23-35  https://doi.org/10.1016/j.ecl.2018.10.002
  21. Lee JY, Baek JH, Ha EJ, Sung JY, Shin JH, Kim JH, et al. 2020 imaging guidelines for thyroid nodules and differentiated thyroid cancer: Korean Society of Thyroid Radiology. Korean J Radiol 2021;22:840-860  https://doi.org/10.3348/kjr.2020.0578
  22. Moon WJ, Baek JH, Jung SL, Kim DW, Kim EK, Kim JY, et al. Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations. Korean J Radiol 2011;12:1-14  https://doi.org/10.3348/kjr.2011.12.1.1
  23. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2016;17:370-395  https://doi.org/10.3348/kjr.2016.17.3.370
  24. Ha EJ, Na DG, Baek JH. Korean thyroid imaging reporting and data system: current status, challenges, and future perspectives. Korean J Radiol 2021;22:1569-1578  https://doi.org/10.3348/kjr.2021.0106
  25. Ha EJ, Na DG, Baek JH, Sung JY, Kim JH, Kang SY. US fine-needle aspiration biopsy for thyroid malignancy: diagnostic performance of seven society guidelines applied to 2000 thyroid nodules. Radiology 2018;287:893-900  https://doi.org/10.1148/radiol.2018171074
  26. Ha EJ, Na DG, Moon WJ, Lee YH, Choi N. Diagnostic performance of ultrasound-based risk-stratification systems for thyroid nodules: comparison of the 2015 American Thyroid Association guidelines with the 2016 Korean Thyroid Association/Korean Society of Thyroid Radiology and 2017 American College of Radiology guidelines. Thyroid 2018;28:1532-1537 
  27. Ha SM, Baek JH, Na DG, Suh CH, Chung SR, Choi YJ, et al. Diagnostic performance of practice guidelines for thyroid nodules: thyroid nodule size versus biopsy rates. Radiology 2019;291:92-99  https://doi.org/10.1148/radiol.2019181723
  28. Yim Y, Na DG, Ha EJ, Baek JH, Sung JY, Kim JH, et al. Concordance of three international guidelines for thyroid nodules classified by ultrasonography and diagnostic performance of biopsy criteria. Korean J Radiol 2020;21:108-116  https://doi.org/10.3348/kjr.2019.0215
  29. Kim SH, Park CS, Jung SL, Kang BJ, Kim JY, Choi JJ, et al. Observer variability and the performance between faculties and residents: US criteria for benign and malignant thyroid nodules. Korean J Radiol 2010;11:149-155  https://doi.org/10.3348/kjr.2010.11.2.149
  30. Choi SH, Kim EK, Kwak JY, Kim MJ, Son EJ. Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules. Thyroid 2010;20:167-172  https://doi.org/10.1089/thy.2008.0354
  31. Hoang JK, Middleton WD, Farjat AE, Teefey SA, Abinanti N, Boschini FJ, et al. Interobserver variability of sonographic features used in the American College of Radiology thyroid imaging reporting and data system. AJR Am J Roentgenol 2018;211:162-167  https://doi.org/10.2214/AJR.17.19192
  32. Persichetti A, Di Stasio E, Coccaro C, Graziano F, Bianchini A, Di Donna V, et al. Inter-and intraobserver agreement in the assessment of thyroid nodule ultrasound features and classification systems: a blinded multicenter study. Thyroid 2020;30:237-242  https://doi.org/10.1089/thy.2019.0360
  33. Na DG, Kim JH, Kim DS, Kim SJ. Thyroid nodules with minimal cystic changes have a low risk of malignancy. Ultrasonography 2016;35:153-158  https://doi.org/10.14366/usg.15070
  34. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011;260:892-899  https://doi.org/10.1148/radiol.11110206
  35. Na DG, Baek JH, Sung JY, Kim JH, Kim JK, Choi YJ, et al. Thyroid imaging reporting and data system risk stratification of thyroid nodules: categorization based on solidity and echogenicity. Thyroid 2016;26:562-572  https://doi.org/10.1089/thy.2015.0460
  36. Ha EJ, Moon WJ, Na DG, Lee YH, Choi N, Kim SJ, et al. A multicenter prospective validation study for the Korean thyroid imaging reporting and data system in patients with thyroid nodules. Korean J Radiol 2016;17:811-821  https://doi.org/10.3348/kjr.2016.17.5.811
  37. Shin HS, Na DG, Paik W, Yoon SJ, Gwon HY, Noh BJ, et al. Malignancy risk stratification of thyroid nodules with macrocalcification and rim calcification based on ultrasound patterns. Korean J Radiol 2021;22:663-671  https://doi.org/10.3348/kjr.2020.0381
  38. Yoon JH, Lee HS, Kim EK, Moon HJ, Kwak JY. Malignancy risk stratification of thyroid nodules: comparison between the thyroid imaging reporting and data system and the 2014 American Thyroid Association management guidelines. Radiology 2016;278:917-924  https://doi.org/10.1148/radiol.2015150056
  39. Middleton WD, Teefey SA, Reading CC, Langer JE, Beland MD, Szabunio MM, et al. Multiinstitutional analysis of thyroid nodule risk stratification using the American College of Radiology thyroid imaging reporting and data system. AJR Am J Roentgenol 2017;208:1331-1341  https://doi.org/10.2214/AJR.16.17613
  40. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation-- multicenter retrospective study. Radiology 2008;247:762-770  https://doi.org/10.1148/radiol.2473070944
  41. Moon WJ, Kwag HJ, Na DG. Are there any specific ultrasound findings of nodular hyperplasia ("leave me alone" lesion) to differentiate it from follicular adenoma? Acta Radiol 2009;50:383-388  https://doi.org/10.1080/02841850902740940
  42. Kim JY, Jung SL, Kim MK, Kim TJ, Byun JY. Differentiation of benign and malignant thyroid nodules based on the proportion of sponge-like areas on ultrasonography: imagingpathologic correlation. Ultrasonography 2015;34:304-311  https://doi.org/10.14366/usg.15016
  43. Bonavita JA, Mayo J, Babb J, Bennett G, Oweity T, Macari M, et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone? AJR Am J Roentgenol 2009;193:207-213  https://doi.org/10.2214/AJR.08.1820
  44. Aydogan BI, Ceyhan K, S,ahin M, Corapcioglu D. Are thyroid nodules with spongiform morphology always benign? Cytopathology 2019;30:46-50  https://doi.org/10.1111/cyt.12635
  45. Kobayashi K, Hirokawa M, Yabuta T, Fukushima M, Kihara M, Takamura Y, et al. Papillary thyroid carcinoma with honeycomb-like multiple small cysts: characteristic features on ultrasonography. Eur Thyroid J 2013;2:270-274  https://doi.org/10.1159/000353780
  46. Lee JY, Na DG, Yoon SJ, Gwon HY, Paik W, Kim T, et al. Ultrasound malignancy risk stratification of thyroid nodules based on the degree of hypoechogenicity and echotexture. Eur Radiol 2020;30:1653-1663  https://doi.org/10.1007/s00330-019-06527-8
  47. Grant EG, Tessler FN, Hoang JK, Langer JE, Beland MD, Berland LL, et al. Thyroid ultrasound reporting lexicon: white paper of the ACR thyroid imaging, reporting and data system (TIRADS) committee. J Am Coll Radiol 2015;12:1272-1279  https://doi.org/10.1016/j.jacr.2015.07.011
  48. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J 2017;6:225-237  https://doi.org/10.1159/000478927
  49. Kim SY, Na DG, Paik W. Which ultrasound image plane is appropriate for evaluating the taller-than-wide sign in the risk stratification of thyroid nodules? Eur Radiol 2021;31:7605-7613  https://doi.org/10.1007/s00330-021-07936-4
  50. Jeh SK, Jung SL, Kim BS, Lee YS. Evaluating the degree of conformity of papillary carcinoma and follicular carcinoma to the reported ultrasonographic findings of malignant thyroid tumor. Korean J Radiol 2007;8:192-197  https://doi.org/10.3348/kjr.2007.8.3.192
  51. Yoon JH, Kim EK, Hong SW, Kwak JY, Kim MJ. Sonographic features of the follicular variant of papillary thyroid carcinoma. J Ultrasound Med 2008;27:1431-1437  https://doi.org/10.7863/jum.2008.27.10.1431
  52. Kim DS, Kim JH, Na DG, Park SH, Kim E, Chang KH, et al. Sonographic features of follicular variant papillary thyroid carcinomas in comparison with conventional papillary thyroid carcinomas. J Ultrasound Med 2009;28:1685-1692  https://doi.org/10.7863/jum.2009.28.12.1685
  53. Kwak JY, Jung I, Baek JH, Baek SM, Choi N, Choi YJ, et al. Image reporting and characterization system for ultrasound features of thyroid nodules: multicentric Korean retrospective study. Korean J Radiol 2013;14:110-117  https://doi.org/10.3348/kjr.2013.14.1.110
  54. Seo H, Na DG, Kim JH, Kim KW, Yoon JW. Ultrasound-based risk stratification for malignancy in thyroid nodules: a fourtier categorization system. Eur Radiol 2015;25:2153-2162  https://doi.org/10.1007/s00330-015-3621-7
  55. Zhou J, Yin L, Wei X, Zhang S, Song Y, Luo B, et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS. Endocrine 2020;70:256-279  https://doi.org/10.1007/s12020-020-02441-y
  56. Langer JE, Khan A, Nisenbaum HL, Baloch ZW, Horii SC, Coleman BG, et al. Sonographic appearance of focal thyroiditis. AJR Am J Roentgenol 2001;176:751-754  https://doi.org/10.2214/ajr.176.3.1760751
  57. Frates MC, Marqusee E, Benson CB, Alexander EK. Subacute granulomatous (de Quervain) thyroiditis: grayscale and color Doppler sonographic characteristics. J Ultrasound Med 2013;32:505-511  https://doi.org/10.7863/jum.2013.32.3.505
  58. Propper RA, Skolnick ML, Weinstein BJ, Dekker A. The nonspecificity of the thyroid halo sign. J Clin Ultrasound 1980;8:129-132  https://doi.org/10.1002/jcu.1870080206
  59. McIvor NP, Freeman JL, Salem S. Ultrasonography of the thyroid and parathyroid glands. ORL J Otorhinolaryngol Relat Spec 1993;55:303-308  https://doi.org/10.1159/000276444
  60. Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: a systematic review and meta-analysis. Eur J Endocrinol 2014;170:R203-R211  https://doi.org/10.1530/EJE-13-0995
  61. Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid 2015;25:538-550  https://doi.org/10.1089/thy.2014.0353
  62. Watters DA, Ahuja AT, Evans RM, Chick W, King WW, Metreweli C, et al. Role of ultrasound in the management of thyroid nodules. Am J Surg 1992;164:654-657  https://doi.org/10.1016/S0002-9610(05)80728-7
  63. Lu C, Chang TC, Hsiao YL, Kuo MS. Ultrasonographic findings of papillary thyroid carcinoma and their relation to pathologic changes. J Formos Med Assoc 1994;93:933-938 
  64. Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey RB Jr. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med 2003;22:1083-1090  https://doi.org/10.7863/jum.2003.22.10.1083
  65. Brito JP, Gionfriddo MR, Al Nofal A, Boehmer KR, Leppin AL, Reading C, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and metaanalysis. J Clin Endocrinol Metab 2014;99:1253-1263  https://doi.org/10.1210/jc.2013-2928
  66. Seo HS, Lee DH, Park SH, Min HS, Na DG. Thyroid follicular neoplasms: can sonography distinguish between adenomas and carcinomas? J Clin Ultrasound 2009;37:493-500  https://doi.org/10.1002/jcu.20625
  67. Zhang JZ, Hu B. Sonographic features of thyroid follicular carcinoma in comparison with thyroid follicular adenoma. J Ultrasound Med 2014;33:221-227  https://doi.org/10.7863/ultra.33.2.221
  68. Tahvildari AM, Pan L, Kong CS, Desser T. Sonographic-pathologic correlation for punctate echogenic reflectors in papillary thyroid carcinoma: what are they? J Ultrasound Med 2016;35:1645-1652  https://doi.org/10.7863/ultra.15.09048
  69. Beland MD, Kwon L, Delellis RA, Cronan JJ, Grant EG. Nonshadowing echogenic foci in thyroid nodules: are certain appearances enough to avoid thyroid biopsy? J Ultrasound Med 2011;30:753-760  https://doi.org/10.7863/jum.2011.30.6.753
  70. Ahuja A, Chick W, King W, Metreweli C. Clinical significance of the comet-tail artifact in thyroid ultrasound. J Clin Ultrasound 1996;24:129-133  https://doi.org/10.1002/(SICI)1097-0096(199603)24:3<129::AID-JCU4>3.0.CO;2-J
  71. Malhi H, Beland MD, Cen SY, Allgood E, Daley K, Martin SE, et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am J Roentgenol 2014;203:1310-1316  https://doi.org/10.2214/AJR.13.11934
  72. Wu H, Zhang B, Li J, Liu Q, Zhao T. Echogenic foci with comet-tail artifact in resected thyroid nodules: not an absolute predictor of benign disease. PLoS One 2018;13:e0191505 
  73. Sohn YM, Na DG, Paik W, Gwon HY, Noh BJ. Malignancy risk of thyroid nodules with nonshadowing echogenic foci. Ultrasonography 2021;40:115-125  https://doi.org/10.14366/usg.20012
  74. Klang K, Kamaya A, Tahvildari AM, Jeffrey RB, Desser TS. Atypical thyroid cancers on sonography. Ultrasound Q 2015;31:69-74  https://doi.org/10.1097/RUQ.0000000000000079
  75. Ha SM, Chung YJ, Ahn HS, Baek JH, Park SB. Echogenic foci in thyroid nodules: diagnostic performance with combination of TIRADS and echogenic foci. BMC Med Imaging 2019;19:28 
  76. Ginat DT, Butani D, Giampoli EJ, Patel N, Dogra V. Pearls and pitfalls of thyroid nodule sonography and fine-needle aspiration. Ultrasound Q 2010;26:171-178  https://doi.org/10.1097/RUQ.0b013e3181efa710
  77. Patel BN, Kamaya A, Desser TS. Pitfalls in sonographic evaluation of thyroid abnormalities. Semin Ultrasound CT MR 2013;34:226-235  https://doi.org/10.1053/j.sult.2012.11.001
  78. Gwon HY, Na DG, Noh BJ, Paik W, Yoon SJ, Choi SJ, et al. Thyroid nodules with isolated macrocalcifications: malignancy risk of isolated macrocalcifications and postoperative risk stratification of malignant tumors manifesting as isolated macrocalcifications. Korean J Radiol 2020;21:605-613  https://doi.org/10.3348/kjr.2019.0523
  79. Paik W, Na DG, Gwon HY, Kim J. CT features of thyroid nodules with isolated macrocalcifications detected by ultrasonography. Ultrasonography 2020;39:130-136  https://doi.org/10.14366/usg.19045
  80. Frates MC, Benson CB, Doubilet PM, Kunreuther E, Contreras M, Cibas ES, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006;91:3411-3417  https://doi.org/10.1210/jc.2006-0690
  81. Zheng Y, Xu S, Kang H, Zhan W. A single-center retrospective validation study of the American College of Radiology Thyroid Imaging Reporting and Data System. Ultrasound Q 2018;34:77-83  https://doi.org/10.1097/RUQ.0000000000000350
  82. Malhi HS, Velez E, Kazmierski B, Gulati M, Deurdulian C, Cen SY, et al. Peripheral thyroid nodule calcifications on sonography: evaluation of malignant potential. AJR Am J Roentgenol 2019;213:672-675  https://doi.org/10.2214/AJR.18.20799
  83. Lu Z, Mu Y, Zhu H, Luo Y, Kong Q, Dou J, et al. Clinical value of using ultrasound to assess calcification patterns in thyroid nodules. World J Surg 2011;35:122-127  https://doi.org/10.1007/s00268-010-0827-3
  84. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133  https://doi.org/10.1089/thy.2015.0020
  85. Kamran SC, Marqusee E, Kim MI, Frates MC, Ritner J, Peters H, et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013;98:564-570  https://doi.org/10.1210/jc.2012-2968
  86. Shin JJ, Caragacianu D, Randolph GW. Impact of thyroid nodule size on prevalence and post-test probability of malignancy: a systematic review. Laryngoscope 2015;125:263-272  https://doi.org/10.1002/lary.24784
  87. Hammad AY, Noureldine SI, Hu T, Ibrahim Y, Masoodi HM, Kandil E. A meta-analysis examining the independent association between thyroid nodule size and malignancy. Gland Surg 2016;5:312-317  https://doi.org/10.21037/gs.2015.11.05
  88. McHenry CR, Huh ES, Machekano RN. Is nodule size an independent predictor of thyroid malignancy? Surgery 2008;144:1062-1068; discussion 1068-1069 
  89. Magister MJ, Chaikhoutdinov I, Schaefer E, Williams N, Saunders B, Goldenberg D. Association of thyroid nodule size and Bethesda class with rate of malignant disease. JAMA Otolaryngol Head Neck Surg 2015;141:1089-1095  https://doi.org/10.1001/jamaoto.2015.1451
  90. Cavallo A, Johnson DN, White MG, Siddiqui S, Antic T, Mathew M, et al. Thyroid nodule size at ultrasound as a predictor of malignancy and final pathologic size. Thyroid 2017;27:641-650  https://doi.org/10.1089/thy.2016.0336
  91. Hong MJ, Na DG, Baek JH, Sung JY, Kim JH. Impact of nodule size on malignancy risk differs according to the ultrasonography pattern of thyroid nodules. Korean J Radiol 2018;19:534-541  https://doi.org/10.3348/kjr.2018.19.3.534
  92. Angell TE, Vyas CM, Medici M, Wang Z, Barletta JA, Benson CB, et al. Differential growth rates of benign vs. malignant thyroid nodules. J Clin Endocrinol Metab 2017;102:4642-4647  https://doi.org/10.1210/jc.2017-01832
  93. O'Connell K, Clark A, Hopman W, Lakoff J. Thyroid nodule growth as a predictor of malignancy. Endocr Pract 2019;25:1029-1034  https://doi.org/10.4158/EP-2019-0049
  94. Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, et al. The natural history of benign thyroid nodules. JAMA 2015;313:926-935  https://doi.org/10.1001/jama.2015.0956
  95. Ajmal S, Rapoport S, Ramirez Batlle H, Mazzaglia PJ. The natural history of the benign thyroid nodule: what is the appropriate follow-up strategy? J Am Coll Surg 2015;220:987-992  https://doi.org/10.1016/j.jamcollsurg.2014.12.010
  96. Falch C, Axt S, Scuffi B, Koenigsrainer A, Kirschniak A, Muller S. Rapid thyroid nodule growth is not a marker for well-differentiated thyroid cancer. World J Surg Oncol 2015;13:338 
  97. Frates MC, Benson CB, Doubilet PM, Cibas ES, Marqusee E. Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med 2003;22:127-131; quiz 132-134  https://doi.org/10.7863/jum.2003.22.2.127
  98. Rago T, Vitti P, Chiovato L, Mazzeo S, De Liperi A, Miccoli P, et al. Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in 'cold' thyroid nodules. Eur J Endocrinol 1998;138:41-46  https://doi.org/10.1530/eje.0.1380041
  99. Appetecchia M, Solivetti FM. The association of colour flow Doppler sonography and conventional ultrasonography improves the diagnosis of thyroid carcinoma. Horm Res 2006;66:249-256  https://doi.org/10.1159/000096013
  100. Ma JJ, Ding H, Xu BH, Xu C, Song LJ, Huang BJ, et al. Diagnostic performances of various gray-scale, color Doppler, and contrast-enhanced ultrasonography findings in predicting malignant thyroid nodules. Thyroid 2014;24:355-363  https://doi.org/10.1089/thy.2013.0150
  101. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 2010;255:260-269  https://doi.org/10.1148/radiol.09091284
  102. Chammas MC, Gerhard R, de Oliveira IR, Widman A, de Barros N, Durazzo M, et al. Thyroid nodules: evaluation with power Doppler and duplex Doppler ultrasound. Otolaryngol Head Neck Surg 2005;132:874-882  https://doi.org/10.1016/j.otohns.2005.02.003
  103. Chung J, Lee YJ, Choi YJ, Ha EJ, Suh CH, Choi M, et al. Clinical applications of Doppler ultrasonography for thyroid disease: consensus statement by the Korean Society of Thyroid Radiology. Ultrasonography 2020;39:315-330  https://doi.org/10.14366/usg.20072
  104. Khadra H, Bakeer M, Hauch A, Hu T, Kandil E. Is vascular flow a predictor of malignant thyroid nodules? A metaanalysis. Gland Surg 2016;5:576-582  https://doi.org/10.21037/gs.2016.12.14
  105. Palaniappan MK, Aiyappan SK, Ranga U. Role of gray scale, color Doppler and spectral Doppler in differentiation between malignant and benign thyroid nodules. J Clin Diagn Res 2016;10:TC01-TC06  https://doi.org/10.7860/JCDR/2016/18459.8227
  106. Zhan J, Ding H. Application of contrast-enhanced ultrasound for evaluation of thyroid nodules. Ultrasonography 2018;37:288-297  https://doi.org/10.14366/usg.18019
  107. Kong J, Li JC, Wang HY, Wang YH, Zhao RN, Zhang Y, et al. Role of superb micro-vascular imaging in the preoperative evaluation of thyroid nodules: comparison with power Doppler flow imaging. J Ultrasound Med 2017;36:1329-1337  https://doi.org/10.7863/ultra.16.07004
  108. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med Biol 2015;41:1126-1147  https://doi.org/10.1016/j.ultrasmedbio.2015.03.009
  109. Zhao CK, Xu HX. Ultrasound elastography of the thyroid: principles and current status. Ultrasonography 2019;38:106- 124  https://doi.org/10.14366/usg.18037
  110. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab 2007;92:2917-2922  https://doi.org/10.1210/jc.2007-0641
  111. Asteria C, Giovanardi A, Pizzocaro A, Cozzaglio L, Morabito A, Somalvico F, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid 2008;18:523-531 
  112. Moon HJ, Sung JM, Kim EK, Yoon JH, Youk JH, Kwak JY. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology 2012;262:1002-1013  https://doi.org/10.1148/radiol.11110839
  113. Hahn SY, Shin JH, Ko EY, Bae JM, Choi JS, Park KW. Complementary role of elastography using carotid artery pulsation in the ultrasonographic assessment of thyroid nodules: a prospective study. Korean J Radiol 2018;19:992-999  https://doi.org/10.3348/kjr.2018.19.5.992
  114. Cappelli C, Pirola I, Gandossi E, Agosti B, Cimino E, Casella C, et al. Real-time elastography: a useful tool for predicting malignancy in thyroid nodules with nondiagnostic cytologic findings. J Ultrasound Med 2012;31:1777-1782  https://doi.org/10.7863/jum.2012.31.11.1777
  115. Nell S, Kist JW, Debray TP, de Keizer B, van Oostenbrugge TJ, Borel Rinkes IH, et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol 2015;84:652-661  https://doi.org/10.1016/j.ejrad.2015.01.003
  116. Rago T, Scutari M, Santini F, Loiacono V, Piaggi P, Di Coscio G, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab 2010;95:5274-5280  https://doi.org/10.1210/jc.2010-0901
  117. Choi WJ, Park JS, Koo HR, Kim SY, Chung MS, Tae K. Ultrasound elastography using carotid artery pulsation in the differential diagnosis of sonographically indeterminate thyroid nodules. AJR Am J Roentgenol 2015;204:396-401  https://doi.org/10.2214/AJR.14.12871
  118. Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, et al. AJCC cancer staging manual, 8th ed. New York: Springer International Publishing, 2017 
  119. Andersen PE, Kinsella J, Loree TR, Shaha AR, Shah JP. Differentiated carcinoma of the thyroid with extrathyroidal extension. Am J Surg 1995;170:467-470  https://doi.org/10.1016/S0002-9610(99)80331-6
  120. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. Prognostic significance of extrathyroid extension of papillary thyroid carcinoma: massive but not minimal extension affects the relapse-free survival. World J Surg 2006;30:780-786  https://doi.org/10.1007/s00268-005-0270-z
  121. Kamaya A, Tahvildari AM, Patel BN, Willmann JK, Jeffrey RB, Desser TS. Sonographic detection of extracapsular extension in papillary thyroid cancer. J Ultrasound Med 2015;34:2225-2230  https://doi.org/10.7863/ultra.15.02006
  122. Kim H, Kim JA, Son EJ, Youk JH, Chung TS, Park CS, et al. Preoperative prediction of the extrathyroidal extension of papillary thyroid carcinoma with ultrasonography versus MRI: a retrospective cohort study. Int J Surg 2014;12:544-548  https://doi.org/10.1016/j.ijsu.2014.03.003
  123. Kwak JY, Kim EK, Youk JH, Kim MJ, Son EJ, Choi SH, et al. Extrathyroid extension of well-differentiated papillary thyroid microcarcinoma on US. Thyroid 2008;18:609-614  https://doi.org/10.1089/thy.2007.0345
  124. Moon SJ, Kim DW, Kim SJ, Ha TK, Park HK, Jung SJ. Ultrasound assessment of degrees of extrathyroidal extension in papillary thyroid microcarcinoma. Endocr Pract 2014;20:1037-1043  https://doi.org/10.4158/EP14016.OR
  125. Lee CY, Kim SJ, Ko KR, Chung KW, Lee JH. Predictive factors for extrathyroidal extension of papillary thyroid carcinoma based on preoperative sonography. J Ultrasound Med 2014;33:231-238  https://doi.org/10.7863/ultra.33.2.231
  126. Choi JS, Chung WY, Kwak JY, Moon HJ, Kim MJ, Kim EK. Staging of papillary thyroid carcinoma with ultrasonography: performance in a large series. Ann Surg Oncol 2011;18:3572-3578  https://doi.org/10.1245/s10434-011-1783-3
  127. Park JS, Son KR, Na DG, Kim E, Kim S. Performance of preoperative sonographic staging of papillary thyroid carcinoma based on the sixth edition of the AJCC/UICC TNM classification system. AJR Am J Roentgenol 2009;192:66-72  https://doi.org/10.2214/AJR.07.3731
  128. Shimamoto K, Satake H, Sawaki A, Ishigaki T, Funahashi H, Imai T. Preoperative staging of thyroid papillary carcinoma with ultrasonography. Eur J Radiol 1998;29:4-10  https://doi.org/10.1016/S0720-048X(97)00184-8
  129. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. Sonographic assessment of the extent of extrathyroidal extension in thyroid cancer. Korean J Radiol 2020;21:1187-1195  https://doi.org/10.3348/kjr.2019.0983
  130. Rim JH, Chong S, Ryu HS, Chung BM, Ahn HS. Feasibility study of ultrasonographic criteria for microscopic and macroscopic extra-thyroidal extension based on thyroid capsular continuity and tumor contour in patients with papillary thyroid carcinomas. Ultrasound Med Biol 2016;42:2391-2400  https://doi.org/10.1016/j.ultrasmedbio.2016.06.014
  131. Ito Y, Miyauchi A, Oda H, Kobayashi K, Kihara M, Miya A. Revisiting low-risk thyroid papillary microcarcinomas resected without observation: was immediate surgery necessary? World J Surg 2016;40:523-528  https://doi.org/10.1007/s00268-015-3184-4
  132. Mulla M, Schulte KM. Central cervical lymph node metastases in papillary thyroid cancer: a systematic review of imaging-guided and prophylactic removal of the central compartment. Clin Endocrinol (Oxf) 2012;76:131-136  https://doi.org/10.1111/j.1365-2265.2011.04162.x
  133. Rotstein L. The role of lymphadenectomy in the management of papillary carcinoma of the thyroid. J Surg Oncol 2009;99:186-188  https://doi.org/10.1002/jso.21234
  134. Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid 2012;22:1144-1152  https://doi.org/10.1089/thy.2012.0043
  135. Sivanandan R, Soo KC. Pattern of cervical lymph node metastases from papillary carcinoma of the thyroid. Br J Surg 2001;88:1241-1244  https://doi.org/10.1046/j.0007-1323.2001.01843.x
  136. Leenhardt L, Erdogan MF, Hegedus L, Mandel SJ, Paschke R, Rago T, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2:147-159  https://doi.org/10.1159/000354537
  137. Yoo RE, Kim JH, Bae JM, Hwang I, Kang KM, Yun TJ, et al. Ultrasonographic indeterminate lymph nodes in preoperative thyroid cancer patients: malignancy risk and ultrasonographic findings predictive of malignancy. Korean J Radiol 2020;21:598-604  https://doi.org/10.3348/kjr.2019.0755
  138. Sohn YM, Kwak JY, Kim EK, Moon HJ, Kim SJ, Kim MJ. Diagnostic approach for evaluation of lymph node metastasis from thyroid cancer using ultrasound and fine-needle aspiration biopsy. AJR Am J Roentgenol 2010;194:38-43  https://doi.org/10.2214/AJR.09.3128
  139. Rosario PW, de Faria S, Bicalho L, Alves MF, Borges MA, Purisch S, et al. Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med 2005;24:1385-1389  https://doi.org/10.7863/jum.2005.24.10.1385
  140. Leboulleux S, Girard E, Rose M, Travagli JP, Sabbah N, Caillou B, et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007;92:3590-3594  https://doi.org/10.1210/jc.2007-0444
  141. Hwang HS, Orloff LA. Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer. Laryngoscope 2011;121:487-491  https://doi.org/10.1002/lary.21227
  142. Ito Y, Jikuzono T, Higashiyama T, Asahi S, Tomoda C, Takamura Y, et al. Clinical significance of lymph node metastasis of thyroid papillary carcinoma located in one lobe. World J Surg 2006;30:1821-1828  https://doi.org/10.1007/s00268-006-0211-5
  143. Sywak M, Cornford L, Roach P, Stalberg P, Sidhu S, Delbridge L. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery 2006;140:1000-1005; discussion 1005-1007  https://doi.org/10.1016/j.surg.2006.08.001
  144. Bardet S, Ciappuccini R, Quak E, Rame JP, Blanchard D, de Raucourt D, et al. Prognostic value of microscopic lymph node involvement in patients with papillary thyroid cancer. J Clin Endocrinol Metab 2015;100:132-140  https://doi.org/10.1210/jc.2014-1199
  145. Bardet S, Malville E, Rame JP, Babin E, Samama G, De Raucourt D, et al. Macroscopic lymph-node involvement and neck dissection predict lymph-node recurrence in papillary thyroid carcinoma. Eur J Endocrinol 2008;158:551-560  https://doi.org/10.1530/EJE-07-0603
  146. Cranshaw IM, Carnaille B. Micrometastases in thyroid cancer. An important finding? Surg Oncol 2008;17:253-258  https://doi.org/10.1016/j.suronc.2008.04.005
  147. Gemsenjager E, Perren A, Seifert B, Schuler G, Schweizer I, Heitz PU. Lymph node surgery in papillary thyroid carcinoma. J Am Coll Surg 2003;197:182-190  https://doi.org/10.1016/S1072-7515(03)00421-6
  148. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. Preoperative ultrasonographic examination for lymph node metastasis: usefulness when designing lymph node dissection for papillary microcarcinoma of the thyroid. World J Surg 2004;28:498-501  https://doi.org/10.1007/s00268-004-7192-z
  149. Aydogan BI, unluturk U, Ates, FSO, Erdogan MF. Sonographic follow-up of patients with differentiated thyroid carcinoma: a comparison of the ultrasound elastography, power doppler ultrasound, and b-mode ultrasound features in detecting malignant lymph nodes. Endocr Pract 2019;25:1049-1055  https://doi.org/10.4158/EP-2018-0567
  150. Jiang W, Wei HY, Zhang HY, Zhuo QL. Value of contrast-enhanced ultrasound combined with elastography in evaluating cervical lymph node metastasis in papillary thyroid carcinoma. World J Clin Cases 2019;7:49-57  https://doi.org/10.12998/wjcc.v7.i1.49
  151. Jung WS, Kim JA, Son EJ, Youk JH, Park CS. Shear wave elastography in evaluation of cervical lymph node metastasis of papillary thyroid carcinoma: elasticity index as a prognostic implication. Ann Surg Oncol 2015;22:111-116  https://doi.org/10.1245/s10434-014-3627-4
  152. Kim HJ, Choi IH, Jin SY, Park HK, Byun DW, Suh K, et al. Efficacy of shear-wave elastography for detecting postoperative cervical lymph node metastasis in papillary thyroid carcinoma. Int J Endocrinol 2018;2018:9382649 
  153. Saadi R, LaRusso S, Vijay K, Goldenberg D. Elastography as a potential modality for screening cervical lymph nodes in patients with papillary thyroid cancer: a review of literature. Ear Nose Throat J 2018;97:31-39  https://doi.org/10.1177/0145561318097001-206
  154. Chen L, Chen L, Liu J, Wang B, Zhang H. Value of qualitative and quantitative contrast-enhanced ultrasound analysis in preoperative diagnosis of cervical lymph node metastasis from papillary thyroid carcinoma. J Ultrasound Med 2020;39:73-81  https://doi.org/10.1002/jum.15074
  155. Hong YR, Luo ZY, Mo GQ, Wang P, Ye Q, Huang PT. Role of contrast-enhanced ultrasound in the pre-operative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma. Ultrasound Med Biol 2017;43:2567-2575  https://doi.org/10.1016/j.ultrasmedbio.2017.07.010
  156. Tao L, Zhou W, Zhan W, Li W, Wang Y, Fan J. Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma via conventional and contrast-enhanced ultrasound. J Ultrasound Med 2020;39:2071-2080  https://doi.org/10.1002/jum.15315
  157. Zhang Y, Luo Y, Zhang M, Yang M, Zhang Y, Li J, et al. Value of contrast-enhanced ultrasound and conventional ultrasound in the diagnosis of papillary thyroid carcinoma with cervical lymph node metastases. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2017;39:177-182 
  158. Lee S, Lee JY, Yoon RG, Kim JH, Hong HS. The value of microvascular imaging for triaging indeterminate cervical lymph nodes in patients with papillary thyroid carcinoma. Cancers (Basel) 2020;12:2839 
  159. Robenshtok E, Fish S, Bach A, Dominguez JM, Shaha A, Tuttle RM. Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients. J Clin Endocrinol Metab 2012;97:2706-2713  https://doi.org/10.1210/jc.2012-1553
  160. Rondeau G, Fish S, Hann LE, Fagin JA, Tuttle RM. Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid 2011;21:845-853  https://doi.org/10.1089/thy.2011.0011
  161. Ha EJ, Baek JH, Na DG. Risk stratification of thyroid nodules on ultrasonography: current status and perspectives. Thyroid 2017;27:1463-1468  https://doi.org/10.1089/thy.2016.0654
  162. Na DG, Kim DS, Kim SJ, Ryoo JW, Jung SL. Thyroid nodules with isolated macrocalcification: malignancy risk and diagnostic efficacy of fine-needle aspiration and core needle biopsy. Ultrasonography 2016;35:212-219  https://doi.org/10.14366/usg.15074
  163. Chung SR, Ahn HS, Choi YJ, Lee JY, Yoo RE, Lee YJ, et al. Diagnostic performance of the modified Korean thyroid imaging reporting and data system for thyroid malignancy: a multicenter validation study. Korean J Radiol 2021;22:1579-1586  https://doi.org/10.3348/kjr.2021.0230
  164. Na DG, Paik W, Cha J, Gwon HY, Kim SY, Yoo RE. Diagnostic performance of the modified Korean thyroid imaging reporting and data system for thyroid malignancy according to nodule size: a comparison with five society guidelines. Ultrasonography 2021;40:474-485  https://doi.org/10.14366/usg.20148
  165. Middleton WD, Teefey SA, Reading CC, Langer JE, Beland MD, Szabunio MM, et al. Comparison of performance characteristics of american college of radiology TI-RADS, Korean Society of thyroid radiology TIRADS, and American Thyroid Association guidelines. AJR Am J Roentgenol 2018;210:1148-1154  https://doi.org/10.2214/AJR.17.18822
  166. Grani G, Lamartina L, Ascoli V, Bosco D, Biffoni M, Giacomelli L, et al. Reducing the number of unnecessary thyroid biopsies while improving diagnostic accuracy: toward the "right" TIRADS. J Clin Endocrinol Metab 2019;104:95-102  https://doi.org/10.1210/jc.2018-01674
  167. Kim PH, Suh CH, Baek JH, Chung SR, Choi YJ, Lee JH. Diagnostic performance of four ultrasound risk stratification systems: a systematic review and meta-analysis. Thyroid 2020;30:1159-1168  https://doi.org/10.1089/thy.2019.0812
  168. Hay ID. Papillary thyroid carcinoma. Endocrinol Metab Clin North Am 1990;19:545-576  https://doi.org/10.1016/S0889-8529(18)30310-4
  169. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418-428  https://doi.org/10.1016/0002-9343(94)90321-2
  170. Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005;103:2269-2273  https://doi.org/10.1002/cncr.21055
  171. Nguyen XV, Roy Choudhury K, Tessler FN, Hoang JK. Effect of tumor size on risk of metastatic disease and survival for thyroid cancer: implications for biopsy guidelines. Thyroid 2018;28:295-300  https://doi.org/10.1089/thy.2017.0526
  172. Castellana M, Piccardo A, Virili C, Scappaticcio L, Grani G, Durante C, et al. Can ultrasound systems for risk stratification of thyroid nodules identify follicular carcinoma? Cancer Cytopathol 2020;128:250-259  https://doi.org/10.1002/cncy.22235
  173. Hahn SY, Shin JH, Oh YL, Kim TH, Lim Y, Choi JS. Role of ultrasound in predicting tumor invasiveness in follicular variant of papillary thyroid carcinoma. Thyroid 2017;27:1177-1184  https://doi.org/10.1089/thy.2016.0677
  174. Trimboli P, Castellana M, Piccardo A, Romanelli F, Grani G, Giovanella L, et al. The ultrasound risk stratification systems for thyroid nodule have been evaluated against papillary carcinoma. A meta-analysis. Rev Endocr Metab Disord 2021;22:453-460  https://doi.org/10.1007/s11154-020-09592-3
  175. Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C, Shindo H, et al. Indications and strategy for active surveillance of adult low-risk papillary thyroid microcarcinoma: consensus statements from the Japan Association of Endocrine Surgery Task Force on management for papillary thyroid microcarcinoma. Thyroid 2021;31:183-192  https://doi.org/10.1089/thy.2020.0330
  176. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid 2015;25:716-759  https://doi.org/10.1089/thy.2014.0460
  177. Ha EJ, Shin JH, Na DG, Jung SL, Lee YH, Paik W, et al. Comparison of the diagnostic performance of the modified Korean thyroid imaging reporting and data system for thyroid malignancy with three international guidelines. Ultrasonography 2021;40:594-601  https://doi.org/10.14366/usg.21056
  178. Brito JP, Ito Y, Miyauchi A, Tuttle RM. A clinical framework to facilitate risk stratification when considering an active surveillance alternative to immediate biopsy and surgery in papillary microcarcinoma. Thyroid 2016;26:144-149  https://doi.org/10.1089/thy.2015.0178
  179. Medici M, Liu X, Kwong N, Angell TE, Marqusee E, Kim MI, et al. Long- versus short-interval follow-up of cytologically benign thyroid nodules: a prospective cohort study. BMC Med 2016;14:11 
  180. Mohammadi M, Betel C, Burton KR, Higgins KM, Ghorab Z, Halperin IJ. Follow-up of benign thyroid nodules-can we do less? Can Assoc Radiol J 2019;70:62-67  https://doi.org/10.1016/j.carj.2018.10.001
  181. Nakamura H, Hirokawa M, Ota H, Kihara M, Miya A, Miyauchi A. Is an increase in thyroid nodule volume a risk factor for malignancy? Thyroid 2015;25:804-811  https://doi.org/10.1089/thy.2014.0567
  182. Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 2017;27:1341-1346  https://doi.org/10.1089/thy.2017.0500
  183. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedus L, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules--2016 update. Endocr Pract 2016;22:622-639  https://doi.org/10.4158/EP161208.GL
  184. Hong MJ, Na DG, Baek JH, Sung JY, Kim JH. Cytology-ultrasonography risk-stratification scoring system based on fine-needle aspiration cytology and the Korean-thyroid imaging reporting and data system. Thyroid 2017;27:953-959  https://doi.org/10.1089/thy.2016.0603
  185. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol 2012;56:333-339  https://doi.org/10.1159/000339959
  186. Samir AE, Vij A, Seale MK, Desai G, Halpern E, Faquin WC, et al. Ultrasound-guided percutaneous thyroid nodule core biopsy: clinical utility in patients with prior nondiagnostic fine-needle aspirate. Thyroid 2012;22:461-467  https://doi.org/10.1089/thy.2011.0061
  187. Na DG, Kim JH, Sung JY, Baek JH, Jung KC, Lee H, et al. Core-needle biopsy is more useful than repeat fine-needle aspiration in thyroid nodules read as nondiagnostic or atypia of undetermined significance by the Bethesda system for reporting thyroid cytopathology. Thyroid 2012;22:468-475  https://doi.org/10.1089/thy.2011.0185
  188. Choi SH, Baek JH, Lee JH, Choi YJ, Hong MJ, Song DE, et al. Thyroid nodules with initially non-diagnostic, fine-needle aspiration results: comparison of core-needle biopsy and repeated fine-needle aspiration. Eur Radiol 2014;24:2819-2826  https://doi.org/10.1007/s00330-014-3325-4
  189. Na DG, Baek JH, Jung SL, Kim JH, Sung JY, Kim KS, et al. Core needle biopsy of the thyroid: 2016 consensus statement and recommendations from Korean Society of Thyroid Radiology. Korean J Radiol 2017;18:217-237  https://doi.org/10.3348/kjr.2017.18.1.217
  190. Singh RS, Wang HH. Timing of repeat thyroid fine-needle aspiration in the management of thyroid nodules. Acta Cytol 2011;55:544-548  https://doi.org/10.1159/000334214
  191. Lubitz CC, Nagarkatti SS, Faquin WC, Samir AE, Hassan MC, Barbesino G, et al. Diagnostic yield of nondiagnostic thyroid nodules is not altered by timing of repeat biopsy. Thyroid 2012;22:590-594  https://doi.org/10.1089/thy.2011.0442
  192. Deniwar A, Hammad AY, Ali DB, Alsaleh N, Lahlouh M, Sholl AB, et al. Optimal timing for a repeat fine-needle aspiration biopsy of thyroid nodule following an initial nondiagnostic fine-needle aspiration. Am J Surg 2017;213:433-437  https://doi.org/10.1016/j.amjsurg.2016.04.010
  193. Ha EJ, Baek JH, Lee JH, Song DE, Kim JK, Shong YK, et al. Sonographically suspicious thyroid nodules with initially benign cytologic results: the role of a core needle biopsy. Thyroid 2013;23:703-708  https://doi.org/10.1089/thy.2012.0426
  194. Kim SY, Han KH, Moon HJ, Kwak JY, Chung WY, Kim EK. Thyroid nodules with benign findings at cytologic examination: results of long-term follow-up with US. Radiology 2014;271:272-281  https://doi.org/10.1148/radiol.13131334
  195. Rosario PW, Calsolari MR. What is the best criterion for repetition of fine-needle aspiration in thyroid nodules with initially benign cytology? Thyroid 2015;25:1115-1120  https://doi.org/10.1089/thy.2015.0253
  196. Maino F, Bufano A, Dalmazio G, Campanile M, Pilli T, Forleo R, et al. Validation of American Thyroid Association ultrasound risk-adapted approach for repeating cytology in benign thyroid nodules. Thyroid 2021;31:446-451  https://doi.org/10.1089/thy.2020.0351
  197. Ng DL, van Zante A, Griffin A, Hills NK, Ljung BM. A large thyroid fine needle aspiration biopsy cohort with long-term population-based follow-up. Thyroid 2021;31:1086-1095  https://doi.org/10.1089/thy.2020.0689
  198. Carrillo JF, Frias-Mendivil M, Ochoa-Carrillo FJ, Ibarra M. Accuracy of fine-needle aspiration biopsy of the thyroid combined with an evaluation of clinical and radiologic factors. Otolaryngol Head Neck Surg 2000;122:917-921  https://doi.org/10.1016/S0194-59980070025-8
  199. Pinchot SN, Al-Wagih H, Schaefer S, Sippel R, Chen H. Accuracy of fine-needle aspiration biopsy for predicting neoplasm or carcinoma in thyroid nodules 4 cm or larger. Arch Surg 2009;144:649-655  https://doi.org/10.1001/archsurg.2009.116
  200. Albuja-Cruz MB, Goldfarb M, Gondek SS, Allan BJ, Lew JI. Reliability of fine-needle aspiration for thyroid nodules greater than or equal to 4 cm. J Surg Res 2013;181:6-10  https://doi.org/10.1016/j.jss.2012.06.030
  201. Yoon JH, Kwak JY, Moon HJ, Kim MJ, Kim EK. The diagnostic accuracy of ultrasound-guided fine-needle aspiration biopsy and the sonographic differences between benign and malignant thyroid nodules 3cm or larger. Thyroid 2011;21:993-1000  https://doi.org/10.1089/thy.2010.0458
  202. Shrestha M, Crothers BA, Burch HB. The impact of thyroid nodule size on the risk of malignancy and accuracy of fine-needle aspiration: a 10-year study from a single institution. Thyroid 2012;22:1251-1256  https://doi.org/10.1089/thy.2012.0265
  203. Ahn HS, Na DG, Baek JH, Sung JY, Kim JH. False negative rate of fine-needle aspiration in thyroid nodules: impact of nodule size and ultrasound pattern. Head Neck 2019;41:967-973  https://doi.org/10.1002/hed.25530
  204. Nou E, Kwong N, Alexander LK, Cibas ES, Marqusee E, Alexander EK. Determination of the optimal time interval for repeat evaluation after a benign thyroid nodule aspiration. J Clin Endocrinol Metab 2014;99:510-516  https://doi.org/10.1210/jc.2013-3160
  205. Ho AS, Sarti EE, Jain KS, Wang H, Nixon IJ, Shaha AR, et al. Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid 2014;24:832-839  https://doi.org/10.1089/thy.2013.0317
  206. Faquin WC, Baloch ZW. Fine-needle aspiration of follicular patterned lesions of the thyroid: diagnosis, management, and follow-up according to National Cancer Institute (NCI) recommendations. Diagn Cytopathol 2010;38:731-739  https://doi.org/10.1002/dc.21292
  207. Sullivan PS, Hirschowitz SL, Fung PC, Apple SK. The impact of atypia/follicular lesion of undetermined significance and repeat fine-needle aspiration: 5 years before and after implementation of the Bethesda System. Cancer Cytopathol 2014;122:866-872  https://doi.org/10.1002/cncy.21468
  208. Allen L, Al Afif A, Rigby MH, Bullock MJ, Trites J, Taylor SM, et al. The role of repeat fine needle aspiration in managing indeterminate thyroid nodules. J Otolaryngol Head Neck Surg 2019;48:16 
  209. Evranos Ogmen B, Aydin C, Kilinc I, Aksoy Altinboga A, Ersoy R, Cakir B. Can repeat biopsies change the prognoses of AUS/FLUS nodule? Eur Thyroid J 2020;9:92-98  https://doi.org/10.1159/000504705
  210. Pyo JS, Sohn JH, Kang G. Core needle biopsy is a more conclusive follow-up method than repeat fine needle aspiration for thyroid nodules with initially inconclusive results: a systematic review and meta-analysis. J Pathol Transl Med 2016;50:217-224  https://doi.org/10.4132/jptm.2016.02.15
  211. Choi YJ, Baek JH, Suh CH, Shim WH, Jeong B, Kim JK, et al. Core-needle biopsy versus repeat fine-needle aspiration for thyroid nodules initially read as atypia/follicular lesion of undetermined significance. Head Neck 2017;39:361-369  https://doi.org/10.1002/hed.24597
  212. Jung SM, Koo HR, Jang KS, Chung MS, Song CM, Ji YB, et al. Comparison of core-needle biopsy and repeat fine-needle aspiration for thyroid nodules with inconclusive initial cytology. Eur Arch Otorhinolaryngol 2021;278:3019-3025  https://doi.org/10.1007/s00405-020-06473-y
  213. Larcher de Almeida AM, Delfim RLC, Vidal APA, Chaves MCDCM, Santiago ACL, Gianotti MF, et al. Combining the American Thyroid Association's ultrasound classification with cytological subcategorization improves the assessment of malignancy risk in indeterminate thyroid nodules. Thyroid 2021;31:922-932  https://doi.org/10.1089/thy.2019.0575
  214. Slowin'ska-Klencka D, Wysocka-Konieczna K, Klencki M, Popowicz B. Diagnostic value of six thyroid imaging reporting and data systems (TIRADS) in cytologically equivocal thyroid nodules. J Clin Med 2020;9:2281 
  215. Hyeon J, Ahn S, Shin JH, Oh YL. The prediction of malignant risk in the category "atypia of undetermined significance/ follicular lesion of undetermined significance" of the Bethesda System for Reporting Thyroid Cytopathology using subcategorization and BRAF mutation results. Cancer Cytopathol 2014;122:368-376  https://doi.org/10.1002/cncy.21396
  216. Wu HH, Inman A, Cramer HM. Subclassification of "atypia of undetermined significance" in thyroid fine-needle aspirates. Diagn Cytopathol 2014;42:23-29  https://doi.org/10.1002/dc.23052
  217. Rosario PW. Thyroid nodules with atypia or follicular lesions of undetermined significance (Bethesda Category III): importance of ultrasonography and cytological subcategory. Thyroid 2014;24:1115-1120  https://doi.org/10.1089/thy.2013.0650
  218. Maia FF, Matos PS, Pavin EJ, Zantut-Wittmann DE. Thyroid imaging reporting and data system score combined with Bethesda system for malignancy risk stratification in thyroid nodules with indeterminate results on cytology. Clin Endocrinol (Oxf) 2015;82:439-444  https://doi.org/10.1111/cen.12525
  219. Yoon JH, Kwon HJ, Kim EK, Moon HJ, Kwak JY. Subcategorization of atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS): a study applying thyroid imaging reporting and data system (TIRADS). Clin Endocrinol (Oxf) 2016;85:275-282  https://doi.org/10.1111/cen.12987
  220. Baser H, Cakir B, Topaloglu O, Alkan A, Polat SB, Dogan HT, et al. Diagnostic accuracy of thyroid imaging reporting and data system in the prediction of malignancy in nodules with atypia and follicular lesion of undetermined significance cytologies. Clin Endocrinol (Oxf) 2017;86:584-590  https://doi.org/10.1111/cen.13274
  221. Bernet V, Hupart KH, Parangi S, Woeber KA. AACE/ACE disease state commentary: molecular diagnostic testing of thyroid nodules with indeterminate cytopathology. Endocr Pract 2014;20:360-363  https://doi.org/10.4158/EP14066.PS
  222. Ferris RL, Baloch Z, Bernet V, Chen A, Fahey TJ 3rd, Ganly I, et al. American Thyroid Association statement on surgical application of molecular profiling for thyroid nodules: current impact on perioperative decision making. Thyroid 2015;25:760-768 
  223. NCCN. NCCN guidelines for patients. Thyroid cancer. NCCN. org Web site. https://www.nccn.org/patients/guidelines/content/PDF/thyroid-patient.pdf. Accessed September 1, 2021 
  224. Kim M, Chung SR, Jeon MJ, Han M, Lee JH, Song DE, et al. Determining whether tumor volume doubling time and growth rate can predict malignancy after delayed diagnostic surgery of follicular neoplasm. Thyroid 2019;29:1418-1424  https://doi.org/10.1089/thy.2019.0017
  225. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. The relationship of thyroid nodule size on malignancy risk according to histological type of thyroid cancer. Acta Radiol 2020;61:620-628  https://doi.org/10.1177/0284185119875642
  226. Tuttle RM, Lemar H, Burch HB. Clinical features associated with an increased risk of thyroid malignancy in patients with follicular neoplasia by fine-needle aspiration. Thyroid 1998;8:377-383  https://doi.org/10.1089/thy.1998.8.377
  227. Ibrahim Y, Mohamed SE, Deniwar A, Al-Qurayshi ZH, Khan AN, Moroz K, et al. The impact of thyroid nodule size on the risk of malignancy in follicular neoplasms. Anticancer Res 2015;35:1635-1639 
  228. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 2018;124:1682-1690  https://doi.org/10.1002/cncr.31245
  229. Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, et al. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg 2018;153:817-824  https://doi.org/10.1001/jamasurg.2018.1153
  230. Khan TM, Zeiger MA. Thyroid nodule molecular testing: is it ready for prime time? Front Endocrinol (Lausanne) 2020;11:590128 
  231. Huang BL, Chabot JA, Lee JA, Kuo JH. A stepwise analysis of the diagnostic algorithm for the prediction of malignancy in thyroid nodules. Surgery 2020;167:28-33  https://doi.org/10.1016/j.surg.2019.05.079
  232. Kwak JY, Kim EK, Kim MJ, Hong SW, Choi SH, Son EJ, et al. The role of ultrasound in thyroid nodules with a cytology reading of "suspicious for papillary thyroid carcinoma". Thyroid 2008;18:517-522  https://doi.org/10.1089/thy.2007.0271
  233. Debnam JM, Guha-Thakurta N, Sun J, Wei W, Zafereo ME, Cabanillas ME, et al. Distinguishing recurrent thyroid cancer from residual nonmalignant thyroid tissue using multiphasic multidetector CT. AJNR Am J Neuroradiol 2020;41:844-851  https://doi.org/10.3174/ajnr.A6519
  234. Expert Panel on Neurological Imaging; Hoang JK, Oldan JD, Mandel SJ, Policeni B, Agarwal V, Burns J, et al. ACR appropriateness criteria® thyroid disease. J Am Coll Radiol 2019;16:S300-S314  https://doi.org/10.1016/j.jacr.2019.02.004
  235. Mishra A, Pradhan PK, Gambhir S, Sabaretnam M, Gupta A, Babu S. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J Surg Res 2015;193:731-737  https://doi.org/10.1016/j.jss.2014.07.065
  236. Padovani RP, Kasamatsu TS, Nakabashi CC, Camacho CP, Andreoni DM, Malouf EZ, et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid 2012;22:926-930  https://doi.org/10.1089/thy.2012.0099
  237. Sohn SY, Choi JH, Kim NK, Joung JY, Cho YY, Park SM, et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid 2014;24:872-877  https://doi.org/10.1089/thy.2013.0238
  238. Yeh MW, Bauer AJ, Bernet VA, Ferris RL, Loevner LA, Mandel SJ, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid 2015;25:3-14  https://doi.org/10.1089/thy.2014.0096
  239. Park JE, Lee JH, Ryu KH, Park HS, Chung MS, Kim HW, et al. Improved diagnostic accuracy using arterial phase CT for lateral cervical lymph node metastasis from papillary thyroid cancer. AJNR Am J Neuroradiol 2017;38:782-788  https://doi.org/10.3174/ajnr.A5054
  240. Cho SJ, Suh CH, Baek JH, Chung SR, Choi YJ, Lee JH. Diagnostic performance of CT in detection of metastatic cervical lymph nodes in patients with thyroid cancer: a systematic review and meta-analysis. Eur Radiol 2019;29:4635-4647  https://doi.org/10.1007/s00330-019-06036-8
  241. Lee Y, Kim JH, Baek JH, Jung SL, Park SW, Kim J, et al. Value of CT added to ultrasonography for the diagnosis of lymph node metastasis in patients with thyroid cancer. Head Neck 2018;40:2137-2148  https://doi.org/10.1002/hed.25202
  242. Kim HK, Ha EJ, Han M, Lee J, Soh EY. Reoperations for structurally persistent or recurrent disease after thyroidectomy: analysis via preoperative CT. Sci Rep 2020;10:12376 
  243. Choi YJ, Lee JH, Yoon DH, Kim HJ, Seo KJ, Do KH, et al. Effect of an arm traction device on image quality and radiation exposure during neck CT: a prospective study. AJNR Am J Neuroradiol 2018;39:151-155  https://doi.org/10.3174/ajnr.A5418
  244. Kranz PG, Wylie JD, Hoang JK, Kosinski AS. Effect of the CT table strap on radiation exposure and image quality during cervical spine CT. AJNR Am J Neuroradiol 2014;35:1870-1876  https://doi.org/10.3174/ajnr.A4074
  245. Wirth S, Meindl T, Treitl M, Pfeifer KJ, Reiser M. Comparison of different patient positioning strategies to minimize shoulder girdle artifacts in head and neck CT. Eur Radiol 2006;16:1757-1762  https://doi.org/10.1007/s00330-006-0168-7
  246. Takeyama N, Ohgiya Y, Hayashi T, Takahashi T, Takasu D, Nakashima J, et al. Comparison of different volumes of saline flush in the assessment of perivenous artefacts in the subclavian vein during cervical CT angiography. Br J Radiol 2011;84:427-434  https://doi.org/10.1259/bjr/86966343
  247. de Monye C, Cademartiri F, de Weert TT, Siepman DA, Dippel DW, van Der Lugt A. Sixteen-detector row CT angiography of carotid arteries: comparison of different volumes of contrast material with and without a bolus chaser. Radiology 2005;237:555-562  https://doi.org/10.1148/radiol.2372040653
  248. Yeom JA, Roh J, Jeong YJ, Lee JC, Kim HY, Suh YJ, et al. Ultra-low-dose neck CT with low-dose contrast material for preoperative staging of thyroid cancer: image quality and diagnostic performance. AJR Am J Roentgenol 2019;212:748-754  https://doi.org/10.2214/AJR.18.20334
  249. Ahn JE, Lee JH, Yi JS, Shong YK, Hong SJ, Lee DH, et al. Diagnostic accuracy of CT and ultrasonography for evaluating metastatic cervical lymph nodes in patients with thyroid cancer. World J Surg 2008;32:1552-1558  https://doi.org/10.1007/s00268-008-9588-7
  250. Kim E, Park JS, Son KR, Kim JH, Jeon SJ, Na DG. Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography. Thyroid 2008;18:411-418  https://doi.org/10.1089/thy.2007.0269
  251. Suh CH, Baek JH, Choi YJ, Lee JH. Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2017;38:154-161  https://doi.org/10.3174/ajnr.A4967
  252. Yang SY, Shin JH, Hahn SY, Lim Y, Hwang SY, Kim TH, et al. Comparison of ultrasonography and CT for preoperative nodal assessment of patients with papillary thyroid cancer: diagnostic performance according to primary tumor size. Acta Radiol 2020;61:21-27  https://doi.org/10.1177/0284185119847677
  253. Lesnik D, Cunnane ME, Zurakowski D, Acar GO, Ecevit C, Mace A, et al. Papillary thyroid carcinoma nodal surgery directed by a preoperative radiographic map utilizing CT scan and ultrasound in all primary and reoperative patients. Head Neck 2014;36:191-202  https://doi.org/10.1002/hed.23277
  254. Yoo RE, Kim JH, Hwang I, Kang KM, Yun TJ, Choi SH, et al. Added value of computed tomography to ultrasonography for assessing LN metastasis in preoperative patients with thyroid cancer: node-by-node correlation. Cancers (Basel) 2020;12:1190 
  255. Bongers PJ, Verzijl R, Dzingala M, Vriens MR, Yu E, Pasternak JD, et al. Preoperative computed tomography changes surgical management for clinically low-risk well-differentiated thyroid cancer. Ann Surg Oncol 2019;26:4439- 4444  https://doi.org/10.1245/s10434-019-07618-y
  256. Lee DH, Kim YK, Yu HW, Choi JY, Park SY, Moon JH. Computed tomography for detecting cervical lymph node metastasis in patients who have papillary thyroid microcarcinoma with tumor characteristics appropriate for active surveillance. Thyroid 2019;29:1653-1659  https://doi.org/10.1089/thy.2019.0100
  257. Shindo ML, Caruana SM, Kandil E, McCaffrey JC, Orloff LA, Porterfield JR, et al. Management of invasive well-differentiated thyroid cancer: an American Head and Neck Society consensus statement. AHNS consensus statement. Head Neck 2014;36:1379-1390  https://doi.org/10.1002/hed.23619
  258. Seo YL, Yoon DY, Lim KJ, Cha JH, Yun EJ, Choi CS, et al. Locally advanced thyroid cancer: can CT help in prediction of extrathyroidal invasion to adjacent structures? AJR Am J Roentgenol 2010;195:W240-W244  https://doi.org/10.2214/AJR.09.3965
  259. Takashima S, Takayama F, Wang J, Kobayashi S, Kadoya M. Using MR imaging to predict invasion of the recurrent laryngeal nerve by thyroid carcinoma. AJR Am J Roentgenol 2003;180:837-842  https://doi.org/10.2214/ajr.180.3.1800837
  260. Wang J, Takashima S, Matsushita T, Takayama F, Kobayashi T, Kadoya M. Esophageal invasion by thyroid carcinomas: prediction using magnetic resonance imaging. J Comput Assist Tomogr 2003;27:18-25  https://doi.org/10.1097/00004728-200301000-00004
  261. Wang JC, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, et al. Tracheal invasion by thyroid carcinoma: prediction using MR imaging. AJR Am J Roentgenol 2001;177:929-936  https://doi.org/10.2214/ajr.177.4.1770929
  262. Hong EK, Kim JH, Lee J, Yoo RE, Kim SC, Kim MJ, et al. Diagnostic value of computed tomography combined with ultrasonography in detecting cervical recurrence in patients with thyroid cancer. Head Neck 2019;41:1206-1212 https://doi.org/10.1002/hed.25538