DOI QR코드

DOI QR Code

Characteristics on spatial distributions of phytoplankton communities in relation to water masses in the western South Sea, Korea in early autumn 2021

2021년 이른 가을 남해 서부 해역의 수괴 분포 및 식물플랑크톤 군집의 공간분포 특성

  • Yang Ho Yoon (Department of Ocean Integrated Science, Chonnam National University)
  • 윤양호 (전남대학교 해양융합과학과)
  • Received : 2021.11.17
  • Accepted : 2021.12.20
  • Published : 2021.12.31

Abstract

A survey was conducted to analyze water masses and spatial distributions of phytoplankton communities at 15 stations on the surface and chlorophyll a maximum layers (CML) in the western South Sea of Korea from September 8 to 9, 2021. As a result, water masses were classified into Coastal Waters (CW) with relatively low salinity, the Tsushima Warm Current (TWC) with high water temperature and high salinity, and mixed waters (MW) showing a mixture of these two water masses. Turbidity showed high concentration in both the surface and CML. The chlorophyll a concentration was as low as 0.90±0.43 ㎍ L-1 in the surface, more than 1.1 ㎍ L-1 in CW, around 1.0 ㎍ L-1 in MW, and less than 0.5 ㎍ L-1 in the TWC. CML was 1.64±0.54 ㎍ L-1. Regarding species composition of phytoplankton communities, there were 57 species in 31 genera(diatoms, 57.8%; dinoflagellates, 35.1%; and other phytoflagellates, 7.1%). The phytoplankton standing crop had 4.6±7.6 cells mL-1 in the surface, more than 30 cells mL-1 in the CW, 2-5 cells mL-1 in the MW, and less than 2 cells mL-1 in the TWC. CML was slightly higher than the surface with a variation of 5.7±8.4 cells mL-1. Dominant species were found to be Rhizosolenia flagilissima f. flagilissima, Skeletonema costatum-ls, and Nitzschia sp./ small size in the surface. For the CML Rh. flagilisima f. flagilissima showed a dominance of 12.0%. For the surface, the diversity variation was 2.36±0.40, which was high for TWC but low for MW. For CML, the diversity variation was 2.29±0.52, which was slightly lower than that of the surface. The dominance in the surface was 0.50±0.15, with a fluctuation range of more than 0.5 in MW and less than 0.5 in the TWC, which was different from the diversity. According to correlation analysis and principal component analysis (PCA), the presence of phytoplankton standing crops was high in CW but low in MW and TWC. That is, phytoplankton communities in early autumn were strongly affected by the expansion and mixing of water masses in western South Sea.

가을 한국 남해 서부 해역의 수괴분석 및 식물플랑크톤 군집의 공간분포 특성을 이해하기 위해 2021년 9월 15개 정점의 표층과 엽록소 a 최댓층(CML)을 대상으로 조사하였다. 결과, 수괴는 고온, 저염의 연안수(CW), 고온, 고염의 쓰시마난류(TWC) 및 이 두 수괴의 혼합특성을 보이는 혼합수(MW)로 구분되었다. 용존산소 포화도는 표층에서는 95% 이상을 보이지만, CML 일부 해역은 낮은 불포화 상태를 보였고, 탁도는 표층과 저층 모두에서 농도가 높았다. 엽록소 a 농도는 표층이 0.90±0.43 ㎍ L-1 변동 폭으로 연안수에서 1.1 ㎍ L-1 이상, 혼합수에서 1.0 ㎍ L-1 전후, 그리고 쓰시마난류에서 0.5 ㎍ L-1 이하를 나타내었다. CML은 1.64±0.54 ㎍ L-1 변동 폭으로 표층보다 약 2배 높았다. 식물플랑크톤 종 조성은 31속 57종으로 규조류가 57.8%, 와편모조류가 35.1%, 규질편모조류 5.3%, 그리고 은편모조류가 1.8%로 단조로웠다. 현존량은 표층이 4.6±7.6 cells mL-1 변동 폭으로 연안에서 30 cells mL-1 이상, 혼합수에서 2~5 cells mL-1, 그리고 쓰시마난류에서 2 cells mL-1 이하를 나타내었다. CML은 5.7±8.4 cells mL-1 변동 폭으로 표층보다 다소 높았다. 5% 이상 우점율을 보이는 우점종은 표층에서 Rhizosolenia flagilissima f. flagilissima, Skeletonema costatum-ls, Nitzschia sp./small size가 각 8.4%, 6.1%, 5.2% 순이었고, CML은 Rh. flagilisima f. flagilissima가 12.0%의 우점율을 나타내었으나, 낮은 현존량으로 우점종에 대한 의미 부여가 어려웠다. 다양도 지수는 표층이 2.36±0.40 변동 폭으로 쓰시마난류에서 높고, 혼합수에서 낮았고, CML은 2.29±0.52 변동 폭으로 표층보다 다소 낮았다. 우점도 지수는 표층이 0.50±0.15 변동 폭으로 혼합수에서 0.5 이상, 쓰시마난류에서 0.5 이하로 다양도와 다른 특성을 보였다. 상관분석 및 주성분 분석 결과는 식물플랑크톤 현존량은 연안수 및 혼합수에서 높고, 높은 탁도를 보인 일부 혼합수 및 쓰시마난류에서 낮은 것에서, 각수괴의 확장 및 혼합 정도에 따라 식물플랑크톤 군집의 출현 및 분포에 커다란 영향을 미치는 것으로 판단되었다.

Keywords

References

  1. Abdalla RR, FA Zaghloul and NR Hussein. 1995. A statistical modelling of phytoplankton eutrophication in the Eastern Harbour, Alexandria, Egypt. Bull. Nat. Inst. Oceanogr. Fish. 21:125-146. 
  2. Baldry K, PG Strutton, NA Hill and PW Boyd. 2020. Subsurface chlorophyll-a maxima in the Southern Ocean. Front. Mar. Sci. 7:671. 
  3. Behrenfeld MJ, DA Siegel, RT O'Malley and S Maritorena. 2009. Global ocean phytoplankton. Am. Met. Soc. 90:S68-S73. 
  4. Cho KD and JH Yoon. 1990. In summer, the origin of Tsushima Warm Current water in western channel of the Korea Strait 1. On the water in surface layer. Bull. Korean Fish. Tech. Soc. 26:184-191. 
  5. Cupp EE. 1943. Marine plankton diatoms of the west coast of north America. Bull. Scripps Inst. Oceanogr. Univ. California 5:1-237. 
  6. Danovaro R, SF Umani and A Pusceddu. 2009. Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS One 4:e7006. 
  7. Deniz N, S Tas and T Koray. 2006. New records of the Dictyocha antarctica Lohmann, Dictyocha crux Ehrenberg and Nitzschia rectilonga Takano species from the Sea of Marmara. Turk. J. Bot. 30:213-216. 
  8. Fukudome KI, JH Yoon, A Ostrovskii, T Takikawa and JS Han. 2010. Seasonal volume transport variation in the Tsushima Warm Current through the Tsushima Straits from 10 years of ADCP observations. J. Oceanogr. 66:539-551.  https://doi.org/10.1007/s10872-010-0045-5
  9. Furuya K, M Hayashia, Y Yabushita and A Ishikawa. 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 50:367-387  https://doi.org/10.1016/S0967-0645(02)00460-5
  10. Gerla DJ, WM Mooij and J Huisman. 2011. Photoinhibition and the assembly of light-limited phytoplankton communities. Oikos 120:359-368.  https://doi.org/10.1111/j.1600-0706.2010.18573.x
  11. Gong GC, YL Lee, L Chen and KK Liu. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont. Shelf Res. 16:1561-1590.  https://doi.org/10.1016/0278-4343(96)00005-2
  12. Guo S, Y Feng, L Wang, L Dai, Z Liu, Y Bai and J Sun. 2014. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Mar. Ecol. Prog. Ser. 516:103-126.  https://doi.org/10.3354/meps10952
  13. Horner RA. 2002. A Taxonomic Guide to Some Common Phytoplankton. Biopress Limited, Dorset Press. Dorchester, UK. 
  14. Howard AG, SDW Comber, D Kifle, EE Antai and DA Purdie. 1995. Arsenic speciation and seasonal changes in nutrient availability and micro-plankton abundance in Southampton Water, UK. Estuar. Coast. Shelf Sci. 40:435-450.  https://doi.org/10.1006/ecss.1995.0030
  15. Hur HB, GA Jacobs and WJ Teague. 1999. Monthly variations of water masses in the Yellow and East China Seas. J. Oceanogr. 55:171-184.  https://doi.org/10.1023/A:1007885828278
  16. Ichikawa H and RC Beardsley. 2002. The current system in the Yellow and East China Seas. J. Oceanogr. 58:77-92.  https://doi.org/10.1023/A:1015876701363
  17. Ismael GL and EMM Rocio. 2013. New data on the distribution of Torodinium robustum and T. teredo(Dinophyceae: Gymnodiniales) in the Gulf of California. Check List 9:809-812.  https://doi.org/10.15560/9.4.809
  18. Jaanus A, K Toming, S Hallfors, K Kaljurand and I Lips. 2009. Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. pp. 157-168. In: Eutrophication in Coastal Ecosystems. Springer. Dordrecht, Netherlands. 
  19. Jiang Z, J Liu, J Chen, Q Chen, X Yan, J Xuan and J Zeng. 2014. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtzu River) estuary during the past 50 years. Water Res. 54:1-14.  https://doi.org/10.1016/j.watres.2014.01.032
  20. Kent ML, JNC Whyte and C LaTrace. 1995. Gill lesion and mortality in seawater pen-reared Atlantic salmon Salmo salar associated with a dense bloom of Skeletonema coastatum and Thalassiosira species. Dis. Aquat. Org. 22:77-81.  https://doi.org/10.3354/dao022077
  21. Kim HJ and SS Yug. 1983. Inversion phenomena of temperature in the southern sea of Korea. Bull. Korean Fish. Soc. 16:111-116. 
  22. Kim HS, H Kim, D Yang and YH Yoon. 2020. Spatio-temporal distribution patterns of phytoplankton community and the characteristics of biological oceanographic environments in the Geumgang Estuary, West Sea of Korea in 2018. Korean J. Environ. Biol. 38:254-270.  https://doi.org/10.11626/KJEB.2020.38.2.254
  23. Kim IO and HG Rho. 1994. A study on China coastal water appeared in the neighbouring seas of Cheju Island. Bull. Korean Fish. Soc. 27:515-528. 
  24. Kim J, H Kim, DG Paeng, TH Bok and J Lee. 2015. Low-salinity induced surface sound channel in the western sea of Jeju Island during summer. J. Acoust. Soc. Am. 137:1576-1585.  https://doi.org/10.1121/1.4913812
  25. Kim JI, JY Kim, YK Choi, HJ Oh and EK Chu. 2005. Distribution of the anchovy eggs associated with coastal frontal structure in southern coastal waters of Korea. Korean J. Ichthyol. 17:205-216. 
  26. Kim SH. 2020. Characteristics of water temperature inversion observed in a region west of Jeju Island in April 2015. Ocean Polar Res. 42:97-113. 
  27. Lee JH, IJ Moon, JH Moon, SH Kim, YY Jeong and JH Koo. 2017. Impact of typhoons on the Changjiang plume extension in the Yellow and East China Seas. J. Geophys. Res.-Oceans 122:4962-4973.  https://doi.org/10.1002/2017JC012754
  28. Lie HJ and CH Cho. 2006. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations. Prog. Oceanogr. 146:121-141. 
  29. Lim DB. 1976. The movements of the waters off the south coast of Korea. J. Oceanol. Soc. Korea 11:77-88. 
  30. Liu X, W Xiao, MR Landry, KP Chiang, L Wang and B Huang. 2016. Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems 19:832-849.  https://doi.org/10.1007/s10021-016-9970-5
  31. Lorrain A, YM Paulet, L Chauvaud, N Savoye, E Nezan and L Guerin. 2000. Growth anomalies in Pecten maximus from coastal waters (Bay of Brest, France): relationship with diatom blooms. J. Mar. Biol. Assoc. UK 80:667-673.  https://doi.org/10.1017/S0025315400002496
  32. Lotocka M. 2006. The first observed bloom of the diatom Dactyliosolen fragilissimus (Bergon) Hasle 1996 in the Gulf of Gdansk. Oceanologia 48:447-452. 
  33. MacKenzie L, I Sims, V Beuzenberg and P Gillespie. 2002. Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, New Zealand. Harmful Algae 1:69-83.  https://doi.org/10.1016/S1568-9883(02)00006-9
  34. McNaughton SJ. 1968. Structure and function in California grassland. Ecol. 49:962-972.  https://doi.org/10.2307/1936547
  35. Miralto A, G Barone, G Romano, SA Poulet, A Ianora, GL Russo, I Buttino, G Mazzarella, M Laabir, M Cabrini and MG Giacobbe. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402:173-176.  https://doi.org/10.1038/46023
  36. MOF (Ministry of Oceans and Fisheries) and MABIK (Marine Biobiversity Institute of Kora). 2021. National List of Marine Species V. Marine Protists. MABIK. Seocheon, Korea. 
  37. Omura T, M Iwataki, VM Borja, H Takayama and Y Fukuyo. 2012. Marine Phytoplankton of the Western Pacific. Kouseisha Kouseikaku. Tokyo. 
  38. Park JH, HY Soh and YH Yoon. 2021. A characteristics of water masses and spatial distributions of phytoplankton community in the South Sea of Korea in spring 2021. J. Korean Soc. Mar. Environ. Energy 24:149-160.  https://doi.org/10.7846/JKOSMEE.2021.24.4.149
  39. Parsons TR, M Takahashi and B Hargrave. 1984. Biological Oceanographic Processes(3rd eds). Pergamon Press. Oxford. 
  40. Philips EJ, S Badylak, MC Christman and MA Lasi. 2010. Climatic trends and temporal patterns of phytoplankton composition, abundance, and succession in the Indian River Lagoon, Florida, USA. Estuar. Coasts 33:498-512.  https://doi.org/10.1007/s12237-009-9166-8
  41. Price JF, RA Weller and R Pinkel. 1986. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 91:8411-8427.  https://doi.org/10.1029/JC091iC07p08411
  42. Ryther JH. 1969. Photosynthesis and fish production in the sea. Science 166:72-76.  https://doi.org/10.1126/science.166.3901.72
  43. Shannon CE and W Weaver. 1963. The Mathematical Theory of Communication. Univ. Illinois Press. Urbana, IL. 
  44. Shi W and M Wang. 2010. Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations. J. Geophys. Res. 115:C11022. 
  45. Xiao W, Y Zeng, X Liu, X Huang, KP Chiang, T Mi, F Zhang, C Li, H Wei, Q Yao and B Huang. 2019. The impact of giant jellyfish Nemopilema nomurai blooms on plankton communities in a temperate marginal sea. Mar. Pollut. Bull. 149:110507. 
  46. Yamasaki Y, Y Ohmichi, T Shikata, M Hirose, Y Shimasaki, Y Oshima and T Honjo. 2011. Species-specific alleopathic effects of the diatom Skeletonema costatum. Thalassas 27:21-32. 
  47. Yang HS, SS Kim and G Kim. 1995. Spatio-temporal distribution of nutrients in the surface waters of Deukryang Bay 1. Seasonal variation of nutrients and limiting factors for primary production. J. Korean Fish. Soc. 28:475-488. 
  48. Yang SK. 1994. variations of the sea surface temperature distribution and the shelf fronts in the Cheju Strait and the Korea Strait. J. Korean Environ. Sci. Soc. 3:111-128. 
  49. Yoon YH. 2013. Vertical profiles of marine environments and micro-phytoplankton community in the continental slope area of the East China Sea in early summer 2009. J. Korean Soc. Mar. Environ. Energy 16:151-162.  https://doi.org/10.7846/JKOSMEE.2013.16.3.151
  50. Yoon YH. 2011. Marine environments and phytoplankton in the South-western Sea of Korea. pp. 68-93. In: The Plankton Ecology in Korean Coastal Waters (Choi CK ed.). Donghwa Pub. Seoul. 
  51. Yoon YH, JH Park, HJ Lee and HY Soh. 2020. Characteristics of ecological structure and spatial distribution of micro-plankton in relation to water masses in the northern East China Sea (nECS) in summer 2019. Korean J. Environ. Biol. 38:355-370.  https://doi.org/10.11626/KJEB.2020.38.3.355
  52. Yoon YH, JS Park and BS Kim. 2019. Spatial distributions of phytoplankton community in the coastal waters of South Sea, Korea during the early summer of 2018. Korean J. Environ. Biol. 37:164-176.  https://doi.org/10.11626/KJEB.2019.37.2.164
  53. Yoon YH, JS Park, YG Park and IH Noh. 2007. Marine environment and the distribution of phytoplankton community in the southwestern sea of Korea in summer 2005. J. Korean Soc. Mar. Environ. Energy 10:155-166.