DOI QR코드

DOI QR Code

Regional Amyloid Burden Differences Evaluated Using Quantitative Cardiac MRI in Patients with Cardiac Amyloidosis

  • Jin Young Kim (Department of Radiology, Keimyung University School of Medicine) ;
  • Yoo Jin Hong (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University Medical Center) ;
  • Kyunghwa Han (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University Medical Center) ;
  • Hye-Jeong Lee (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University Medical Center) ;
  • Jin Hur (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University Medical Center) ;
  • Young Jin Kim (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University Medical Center) ;
  • Byoung Wook Choi (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University Medical Center)
  • 투고 : 2019.10.14
  • 심사 : 2020.09.28
  • 발행 : 2021.06.01

초록

Objective: This study aimed to investigate the regional amyloid burden and myocardial deformation using T1 mapping and strain values in patients with cardiac amyloidosis (CA) according to late gadolinium enhancement (LGE) patterns. Materials and Methods: Forty patients with CA were divided into 2 groups per LGE pattern, and 15 healthy subjects were enrolled. Global and regional native T1 and T2 mapping, extracellular volume (ECV), and cardiac magnetic resonance (CMR)-feature tracking strain values were compared in an intergroup and interregional manner. Results: Of the patients with CA, 32 had diffuse global LGE (group 2), and 8 had focal patchy or no LGE (group 1). Global native T1, T2, and ECV were significantly higher in groups 1 and 2 than in the control group (native T1: 1384.4 ms vs. 1466.8 ms vs. 1230.5 ms; T2: 53.8 ms vs. 54.2 ms vs. 48.9 ms; and ECV: 36.9% vs. 51.4% vs. 26.0%, respectively; all, p < 0.001). Basal ECV (53.7%) was significantly higher than the mid and apical ECVs (50.1% and 50.0%, respectively; p < 0.001) in group 2. Basal and mid peak radial strains (PRSs) and peak circumferential strains (PCSs) were significantly lower than the apical PRS and PCS, respectively (PRS, 15.6% vs. 16.7% vs. 26.9%; and PCS, -9.7% vs. -10.9% vs. -15.0%; all, p < 0.001). Basal ECV and basal strain (2-dimensional PRS) in group 2 showed a significant negative correlation (r = -0.623, p < 0.001). Group 1 showed no regional ECV differences (basal, 37.0%; mid, 35.9%; and apical, 38.3%; p = 0.184). Conclusion: Quantitative T1 mapping parameters such as native T1 and ECV may help diagnose early CA. ECV, in particular, can reflect regional differences in the amyloid deposition in patients with advanced CA, and increased basal ECV is related to decreased basal strain. Therefore, quantitative CMR parameters may help diagnose CA and determine its severity in patients with or without LGE.

키워드

과제정보

Supported by a Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Science, Information and Communication Technology, and Future Planning (NRF-2017R1A2B4009661) and faculty research grant of Yonsei University College of Medicine (6-2016-0077).

참고문헌

  1. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003;349:583-596
  2. Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: a review. J Am Heart Assoc 2012;1:e000364
  3. Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 2013;6:34-39
  4. Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev 2015;20:133-144
  5. Di Bella G, Minutoli F, Mazzeo A, Vita G, Oreto G, Carerj S, et al. MRI of cardiac involvement in transthyretin familial amyloid polyneuropathy. AJR Am J Roentgenol 2010;195:W394-W399
  6. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015;132:1570-1579
  7. Baroni M, Nava S, Quattrocchi G, Milazzo A, Giannattasio C, Roghi A, et al. Role of cardiovascular magnetic resonance in suspected cardiac amyloidosis: late gadolinium enhancement pattern as mortality predictor. Neth Heart J 2018;26:34-40
  8. Banypersad SM. The evolving role of cardiovascular magnetic resonance imaging in the evaluation of systemic amyloidosis. Magn Reson Insights 2019;12:1178623X19843519
  9. Phelan D, Collier P, Thavendiranathan P, Popovic' ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012;98:1442-1448
  10. Lee GY, Kim HK, Choi JO, Chang SA, Oh JK, Jeon ES, et al. Visual assessment of relative apical sparing pattern is more useful than quantitative assessment for diagnosing cardiac amyloidosis in borderline or mildly increased left ventricular wall thickness. Circ J 2015;79:1575-1584
  11. Ternacle J, Bodez D, Guellich A, Audureau E, Rappeneau S, Lim P, et al. Causes and causes and consequences of longitudinal LV dysfunction assessed by 2D strain echocardiography in cardiac amyloidosis. JACC Cardiovasc Imaging 2016;9:126-138
  12. Bandula S, Banypersad SM, Sado D, Flett AS, Punwani S, Taylor SA, et al. Measurement of tissue interstitial volume in healthy patients and those with amyloidosis with equilibrium contrast-enhanced MR imaging. Radiology 2013;268:858-864
  13. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic lightchain amyloidosis. Eur Heart J 2015;36:244-251
  14. Barros-Gomes S, Williams B, Nhola LF, Grogan M, Maalouf JF, Dispenzieri A, et al. Prognosis of light chain amyloidosis with preserved LVEF: added value of 2D speckle-tracking echocardiography to the current prognostic staging system. JACC Cardiovasc Imaging 2017;10:398-407
  15. Bhatti S, Vallurupalli S, Ambach S, Magier A, Watts E, Truong V, et al. Myocardial strain pattern in patients with cardiac amyloidosis secondary to multiple myeloma: a cardiac MRI feature tracking study. Int J Cardiovasc Imaging 2018;34:27-33
  16. Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J Magn Reson Imaging 2013;38:1591-1595
  17. Dungu JN, Valencia O, Pinney JH, Gibbs SD, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 2014;7:133-142
  18. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:157-165
  19. Robbers LF, Baars EN, Brouwer WP, Beek AM, Hofman MB, Niessen HW, et al. T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging 2012;5:423-426
  20. Dungu JN, Anderson LJ, Whelan CJ, Hawkins PN. Cardiac transthyretin amyloidosis. Heart 2012;98:1546-1554
  21. Schuster A, Morton G, Hussain ST, Jogiya R, Kutty S, Asrress KN, et al. The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol 2013;82:296-301
  22. Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am J Hematol 2005;79:319-328
  23. The Criteria Committee of the New York Heart Association. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels, 9th ed. Boston, Mass: Little, Brown & Co, 1994
  24. Boynton SJ, Geske JB, Dispenzieri A, Syed IS, Hanson TJ, Grogan M, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging 2016;9:680-686
  25. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.e14
  26. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016;17:1321-1360
  27. Dong Y, Yang D, Han Y, Cheng W, Sun J, Wan K, et al. Age and gender impact the measurement of myocardial interstitial fibrosis in a healthy adult Chinese population: a cardiac magnetic resonance study. Front Physiol 2018;9:140
  28. Falk RH, Skinner M. The systemic amyloidoses: an overview. Adv Intern Med 2000;45:107-137
  29. Hachulla E, Grateau G. Diagnostic tools for amyloidosis. Joint Bone Spine 2002;69:538-545
  30. vanden Driesen RI, Slaughter RE, Strugnell WE. MR findings in cardiac amyloidosis. AJR Am J Roentgenol 2006;186:1682-1685
  31. Kramer CM. Role of cardiac MR imaging in cardiomyopathies. J Nucl Med 2015;56 Suppl 4:39S-45S
  32. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-497
  33. Kim PK, Hong YJ, Im DJ, Suh YJ, Park CH, Kim JY, et al. Myocardial T1 and T2 mapping: techniques and clinical applications. Korean J Radiol 2017;18:113-131
  34. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado D, White SK, et al. AL and ATTR cardiac amyloid are different: native T1 mapping and ECV detect different biology. J Cardiovasc Magn Reson 2014;16:341
  35. Bravo PE, Fujikura K, Kijewski MF, Jerosch-Herold M, Jacob S, El-Sady MS, et al. Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits. JACC Cardiovasc Imaging 2019;12:1165-1173
  36. Sperry BW, Vranian MN, Tower-Rader A, Hachamovitch R, Hanna M, Brunken R, et al. Regional variation in technetium pyrophosphate uptake in transthyretin cardiac amyloidosis and impact on mortality. JACC Cardiovasc Imaging 2018;11:234-242
  37. Pandey T, Alapati S, Wadhwa V, Edupuganti MM, Gurram P, Lensing S, et al. Evaluation of myocardial strain in patients with amyloidosis using cardiac magnetic resonance feature tracking. Curr Probl Diagn Radiol 2017;46:288-294