DOI QR코드

DOI QR Code

Detection of Contralateral Breast Cancer Using Diffusion-Weighted Magnetic Resonance Imaging in Women with Newly Diagnosed Breast Cancer: Comparison with Combined Mammography and Whole-Breast Ultrasound

  • Su Min Ha (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Jung Min Chang (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Su Hyun Lee (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Eun Sil Kim (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Soo-Yeon Kim (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Yeon Soo Kim (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Nariya Cho (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Woo Kyung Moon (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital)
  • 투고 : 2020.09.29
  • 심사 : 2020.12.27
  • 발행 : 2021.06.01

초록

Objective: To compare the screening performance of diffusion-weighted (DW) MRI and combined mammography and ultrasound (US) in detecting clinically occult contralateral breast cancer in women with newly diagnosed breast cancer. Materials and Methods: Between January 2017 and July 2018, 1148 women (mean age ± standard deviation, 53.2 ± 10.8 years) with unilateral breast cancer and no clinical abnormalities in the contralateral breast underwent 3T MRI, digital mammography, and radiologist-performed whole-breast US. In this retrospective study, three radiologists independently and blindly reviewed all DW MR images (b = 1000 s/mm2 and apparent diffusion coefficient map) of the contralateral breast and assigned a Breast Imaging Reporting and Data System category. For combined mammography and US evaluation, prospectively assessed results were used. Using histopathology or 1-year follow-up as the reference standard, cancer detection rate and the patient percentage with cancers detected among all women recommended for tissue diagnosis (positive predictive value; PPV2) were compared. Results: Of the 30 cases of clinically occult contralateral cancers (13 invasive and 17 ductal carcinoma in situ [DCIS]), DW MRI detected 23 (76.7%) cases (11 invasive and 12 DCIS), whereas combined mammography and US detected 12 (40.0%, five invasive and seven DCIS) cases. All cancers detected by combined mammography and US, except two DCIS cases, were detected by DW MRI. The cancer detection rate of DW MRI (2.0%; 95% confidence interval [CI]: 1.3%, 3.0%) was higher than that of combined mammography and US (1.0%; 95% CI: 0.5%, 1.8%; p = 0.009). DW MRI showed higher PPV2 (42.1%; 95% CI: 26.3%, 59.2%) than combined mammography and US (18.5%; 95% CI: 9.9%, 30.0%; p = 0.001). Conclusion: In women with newly diagnosed breast cancer, DW MRI detected significantly more contralateral breast cancers with fewer biopsy recommendations than combined mammography and US.

키워드

과제정보

We thank a Min-ju Kim, a statistician who helped with statistics, Department of clinical epidemiology and biostatistics, Asan Medical Center.

참고문헌

  1. Goldflam K, Hunt KK, Gershenwald JE, Singletary SE, Mirza N, Kuerer HM, et al. Contralateral prophylactic mastectomy. Predictors of significant histologic findings. Cancer 2004;101:1977-1986
  2. Jobsen JJ, van der Palen J, Ong F, Riemersma S, Struikmans H. Bilateral breast cancer, synchronous and metachronous; differences and outcome. Breast Cancer Res Treat 2015;153:277-283 https://doi.org/10.1007/s10549-015-3538-5
  3. Brennan ME, Houssami N, Lord S, Macaskill P, Irwig L, Dixon JM, et al. Magnetic resonance imaging screening of the contralateral breast in women with newly diagnosed breast cancer: systematic review and meta-analysis of incremental cancer detection and impact on surgical management. J Clin Oncol 2009;27:5640-5649 https://doi.org/10.1200/JCO.2008.21.5756
  4. Lehman CD, Gatsonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 2007;356:1295-1303 https://doi.org/10.1056/NEJMoa065447
  5. Kim JY, Cho N, Koo HR, Yi A, Kim WH, Lee SH, et al. Unilateral breast cancer: screening of contralateral breast by using preoperative MR imaging reduces incidence of metachronous cancer. Radiology 2013;267:57-66 https://doi.org/10.1148/radiol.12120629
  6. Lee SG, Orel SG, Woo IJ, Cruz-Jove E, Putt ME, Solin LJ, et al. MR imaging screening of the contralateral breast in patients with newly diagnosed breast cancer: preliminary results. Radiology 2003;226:773-778 https://doi.org/10.1148/radiol.2263020041
  7. Houssami N, Hayes DF. Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin 2009;59:290-302 https://doi.org/10.3322/caac.20028
  8. Behzadi AH, Zhao Y, Farooq Z, Prince MR. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology 2018;286:731
  9. Garcia-Bournissen F, Shrim A, Koren G. Safety of gadolinium during pregnancy. Can Fam Physician 2006;52:309-310
  10. Nicholas BA, Vricella GJ, Smith M, Passalacqua M, Gulani V, Ponsky LE. Contrast-induced nephropathy and nephrogenic systemic fibrosis: minimizing the risk. Can J Urol 2012;19:6074-6080
  11. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol 2019;30:1194-1220
  12. Telli ML, Gradishar WJ, Ward JH. NCCN guidelines updates: breast cancer. J Natl Compr Canc Netw 2019;17:552-555
  13. Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 2004;233:830-849 https://doi.org/10.1148/radiol.2333031484
  14. Berg WA, Zhang Z, Lehrer D, Jong RA, Pisano ED, Barr RG, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 2012;307:1394-1404 https://doi.org/10.1001/jama.2012.388
  15. Moon WK, Noh DY, Im JG. Multifocal, multicentric, and contralateral breast cancers: bilateral whole-breast US in the preoperative evaluation of patients. Radiology 2002;224:569-576 https://doi.org/10.1148/radiol.2242011215
  16. Amornsiripanitch N, Bickelhaupt S, Shin HJ, Dang M, Rahbar H, Pinker K, et al. Diffusion-weighted MRI for unenhanced breast cancer screening. Radiology 2019;293:504-520 https://doi.org/10.1148/radiol.2019182789
  17. Baltzer PAT, Bickel H, Spick C, Wengert G, Woitek R, Kapetas P, et al. Potential of noncontrast magnetic resonance imaging with diffusion-weighted imaging in characterization of breast lesions: intraindividual comparison with dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol 2018;53:229-235
  18. Rahbar H, Zhang Z, Chenevert TL, Romanoff J, Kitsch AE, Hanna LG, et al. Utility of diffusion-weighted imaging to decrease unnecessary biopsies prompted by breast MRI: a trial of the ECOG-ACRIN cancer research group (A6702). Clin Cancer Res 2019;25:1756-1765 https://doi.org/10.1158/1078-0432.CCR-18-2967
  19. Kang JW, Shin HJ, Shin KC, Chae EY, Choi WJ, Cha JH, et al. Unenhanced magnetic resonance screening using fused diffusion-weighted imaging and maximum-intensity projection in patients with a personal history of breast cancer: role of fused DWI for postoperative screening. Breast Cancer Res Treat 2017;165:119-128 https://doi.org/10.1007/s10549-017-4322-5
  20. Lee SH, Shin HJ, Moon WK. Diffusion-weighted magnetic resonance imaging of the breast: standardization of image acquisition and interpretation. Korean J Radiol 2021;22:9-22 https://doi.org/10.3348/kjr.2020.0093
  21. Girometti R, Marconi V, Linda A, Di Mico L, Bondini F, Zuiani C, et al. Preoperative assessment of breast cancer: Multireader comparison of contrast-enhanced MRI versus the combination of unenhanced MRI and digital breast tomosynthesis. Breast 2020;49:174-182 https://doi.org/10.1016/j.breast.2019.11.013
  22. Song SE, Park EK, Cho KR, Seo BK, Woo OH, Jung SP, et al. Additional value of diffusion-weighted imaging to evaluate multifocal and multicentric breast cancer detected using preoperative breast MRI. Eur Radiol 2017;27:4819-4827 https://doi.org/10.1007/s00330-017-4898-5
  23. Amornsiripanitch N, Rahbar H, Kitsch AE, Lam DL, Weitzel B, Partridge SC. Visibility of mammographically occult breast cancer on diffusion-weighted MRI versus ultrasound. Clin Imaging 2018;49:37-43
  24. McDonald ES, Hammersley JA, Chou SH, Rahbar H, Scheel JR, Lee CI, et al. Performance of DWI as a rapid unenhanced technique for detecting mammographically occult breast cancer in elevated-risk women with dense breasts. AJR Am J Roentgenol 2016;207:205-216 https://doi.org/10.2214/AJR.15.15873
  25. Yabuuchi H, Matsuo Y, Sunami S, Kamitani T, Kawanami S, Setoguchi T, et al. Detection of non-palpable breast cancer in asymptomatic women by using unenhanced diffusion-weighted and T2-weighted MR imaging: comparison with mammography and dynamic contrast-enhanced MR imaging. Eur Radiol 2011;21:11-17 https://doi.org/10.1007/s00330-010-1890-8
  26. Ha SM, Chang JM, Lee SH, Kim ES, Kim SY, Cho N, et al. Diffusion-weighted MRI at 3.0 T for detection of occult disease in the contralateral breast in women with newly diagnosed breast cancer. Breast Cancer Res Treat 2020;182:283-297 https://doi.org/10.1007/s10549-020-05697-0
  27. Baltzer P, Mann RM, Iima M, Sigmund EE, Clauser P, Gilbert FJ, et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur Radiol 2020;30:1436-1450
  28. D'Orsi CJ. ACR BI-RADS® atlas, breast imaging reporting and data system, 5th ed. Reston: American College of Radiology, 2013
  29. Lee JM, Ichikawa L, Valencia E, Miglioretti DL, Wernli K, Buist DSM, et al. Performance benchmarks for screening breast MR imaging in community practice. Radiology 2017;285:44-52 https://doi.org/10.1148/radiol.2017162033
  30. Pinker K, Moy L, Sutton EJ, Mann RM, Weber M, Thakur SB, et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a standalone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging. Invest Radiol 2018;53:587-595
  31. Iima M, Le Bihan D, Okumura R, Okada T, Fujimoto K, Kanao S, et al. Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. Radiology 2011;260:364-372 https://doi.org/10.1148/radiol.11101892
  32. Shin HJ, Chae EY, Choi WJ, Ha SM, Park JY, Shin KC, et al. Diagnostic performance of fused diffusion-weighted imaging using unenhanced or postcontrast T1-weighted MR imaging in patients with breast cancer. Medicine (Baltimore) 2016;95:e3502
  33. Song SE, Woo OH, Cho KR, Seo BK, Son YH, Grimm R, et al. Simultaneous multislice readout-segmented echo planar imaging for diffusion-weighted MRI in patients with invasive breast cancers. J Magn Reson Imaging 2021;53:1108-1115 https://doi.org/10.1002/jmri.27433
  34. Berger N, Varga Z, Frauenfelder T, Boss A. MRI-guided breast vacuum biopsy: localization of the lesion without contrast-agent application using diffusion-weighted imaging. Magn Reson Imaging 2017;38:1-5 https://doi.org/10.1016/j.mri.2016.12.006
  35. Han X, Li J, Wang X. Comparison and optimization of 3.0 T breast images quality of diffusion-weighted imaging with multiple b-values. Acad Radiol 2017;24:418-425 https://doi.org/10.1016/j.acra.2016.11.006