DOI QR코드

DOI QR Code

Distribution of Tetracycline-Resistance Genes detected from isolates of cultured fishes in Gyeonggi-do

경기도 내 양식어류에서 분리한 병원성 세균의 Tetracycline 내성 유전자 분포

  • Cho, Ki-Taek (Gyeonggi Province Maritime&Fisheries Research Institute) ;
  • Hwang, Yun-Jeong (Gyeonggi Province Maritime&Fisheries Research Institute) ;
  • Lee, Sang-Woo (Gyeonggi Province Maritime&Fisheries Research Institute) ;
  • Kim, Kwang-Il (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Jeong, Hyun-Do (Department of Aquatic Life Medicine, Pukyong National University)
  • 조기택 (경기도 해양수산자원연구소) ;
  • 황윤정 (경기도 해양수산자원연구소) ;
  • 이상우 (경기도 해양수산자원연구소) ;
  • 김광일 (부경대학교 수산생명의학과) ;
  • 정현도 (부경대학교 수산생명의학과)
  • Received : 2021.05.27
  • Accepted : 2021.06.07
  • Published : 2021.06.30

Abstract

Tetracycline (TC) is one of the antibiotics used for treatment of bacterial infection in Korea. Inadequate usage and abuse cause the resistance to antibiotics, like Tetracycline, Erythromycin, and Fluoroquinolone. It can also affect severe economic loss in aquaculture field in Korea. We isolated 101 bacterial samples from diseased fish at aquaculture sites in Gyeonggi-do during 2015~2018. Minimum inhibitory concentration (MIC) method has been used to determine distribution and to identify bacterial isolates resistant to antibiotics including Oxytetracycline (OTC), Ampicillin (AMP), Clindamycin (CLI), Enrofloxacin (ENRO), Gentamycin (GEN). TC resistant isolates were confirmed antibiotic resistant genes by conventional PCR. Bacterial isolates were identified as Aeromonas spp. (43.5%), Pseudomonas spp. (4.0%) and Vibrio spp. (5.0%). It was confirmed that multi-resistant isolates (77.2%) were predominant over single-resistant one (22.8%). TC resistant genes like tet(A), tet(D), tet(E), tet(G), tet(M), and tet(S) were detected and tet(A) was the most prevalent. Aeromonas spp. is a dominant strain in bacterial infections in fishes of aquaculture sites, and further investigation on various antibiotic resistance genes will be needed for clear understanding of aquaculture sites in Gyeonggi-do.

Tetracycline (TC)은 국내에서 세균 감염 치료에 반드시 필요한 대표적인 항생제로 알려져 있다. 그러나 부적절한 사용과 남용으로 인해 Tetracycline, Erythromycin, Fluoroquinolone 등과 같은 항생제에 대한 내성이 발생하고 있으며, 이는 국내 양식 분야에서 심각한 경제적 피해를 유발한다. 본 연구에서는 2015~2018년에 걸쳐 경기도 양식장의 양식생물에서 101개 균주를 분리하였다. 분리균주는 간이적인 생화학적 방법을 통해 동정하였으며, 최소 억제농도(MIC)의 확인을 통해 Oxytetracycline (OTC), Ampicillin (AMP), Clindamycin (CLI), Enrofloxacin (ENRO), Gentamycin (GEN)에 대한 내성 여부를 확인하였다. 이중 TC에 내성을 보이는 균주는 PCR법을 통해 tet 유전자의 분포를 조사하였다. 그 결과, 총 101개 균주 중에서 Aeromonas spp.가 44개(43.5%)로 가장 우점하였고, 그 다음으로 Pseudomonas spp. 4개(4.0%), Vibrio spp. 5개(5.0%)가 확인되었다. 또한, 다중 내성을 보이는 균주(77.2%)가 단일 내성균(22.8%)보다 많음을 확인하였다. tet(A), tet(D), tet(E), tet(G), tet(M), tet(S)가 TC 내성 균주에서 검출되었으며 tet(A)가 가장 우점적으로 확인되었다. Aeromonas spp.는 분리된 균주 중에서 가장 많았으며, 경기도 내 양식현장에서의 다양한 항생제 내성 유전자의 특성에 대한 추가적인 연구가 필요하다.

Keywords

Acknowledgement

이 논문은 경기도해양수산자원연구소의 본예산사업 중 수산질병관리원 운영 및 시험연구사업 예산에 의해 수행되었습니다.

References

  1. Akinbowale O.L., Peng H., Barton M.D.: Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J. Appl. Microbiol., 100(5):1103-1113, 2006. https://doi.org/10.1111/j.1365-2672.2006.02812.x
  2. Aminov R.I., Garrigues-Jeanjean N., Mackie R.I.: Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol., 67(1):22-32, 2001. https://doi.org/10.1128/AEM.67.1.22-32.2001
  3. Butaye P., Cloeckaert A., Schwarz S.: Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int. J. Antimicrob. Agents, 22:205-10, 2003. https://doi.org/10.1016/S0924-8579(03)00202-4
  4. Chopra I. and Roberts M.C.: Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 65:232-260, 2001. https://doi.org/10.1128/MMBR.65.2.232-260.2001
  5. Dung T.T., Haesebrouck F., Sorgeloos P., Tuan N.A., Pasmans F., Smet A., Decostere A.: IncK plasmid-mediated tetracycline resistance in Edwardsiella ictaluri isolates from diseased freshwater catfish in Vietnam. Aquaculture, 295:157-159, 2009. https://doi.org/10.1016/j.aquaculture.2009.07.010
  6. Furushita M., Shiba T., Maeda T., Yahata M., Kaneoka A., Takahashi Y., Torii K., Haegawa T., Ohta M.: Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol., 69:5336-5342, 2003. https://doi.org/10.1128/AEM.69.9.5336-5342.2003
  7. Huang L., Xu Y.B., Xu J.X., Ling J.Y., Chen J.L., Zhou J.L., Zeung L., Du P.Q.: Antibiotic resistance genes (ARGs) in duck and fish production ponds with intergrated or non-integrated mode. Chemosphere, 168:1107-1114, 2017. https://doi.org/10.1016/j.chemosphere.2016.10.096
  8. Jang H.M., Kim Y.B., Choi S., Lee Y., Shin S.G., Unno T., Kim, Y.M.: Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environ. pollut., 233:1049-1057, 2018. https://doi.org/10.1016/j.envpol.2017.10.006
  9. Jun L.J., Jeong J.B., Huh M.D., Chung J.K., Choi D.L., Lee C.H., Jeong H.D.: Detection of tetracycline-resistance determinants by multiplex polymerase chain reaction in Edwardsiella tarda isolated from fish farms in Korea. Aquaculture, 240:89-100, 2004. https://doi.org/10.1016/j.aquaculture.2004.07.025
  10. Jun L.J.: Characterization of antibiotics resistant genes carried by fish pathogens in Korea. Ph. D. Thesis, Pukyung National University, Busan, Korea. 2010.
  11. Jun J.W., Kim J.H., Gomez D.K., Choresca C.H. Jr., Han J.E., Shin S.P., Park S.C.: Occurrence of tetracycline-resistant Aeromonas hydrophila infection in Korean cyprinid loach (Misgurnus anguillicaudatus). Afr. J. Microbiol. Res., 4(9):849-855. 2010.
  12. Labella A., Gennari M., Ghidini V., Trento I., Manfrin A., Borrego J.J., Lleo M.M.: High incidence of anti-biotic multi-resistant bacteria in coastal areas dedicated to fish farming. Mar. Pollut. Bull., 70:197-203, 2013. https://doi.org/10.1016/j.marpolbul.2013.02.037
  13. Levy S.B.: Active efflux mechanism for antimicrobial resistance. Antimicrob. Agents Chemother., 36:695-703, 1992. https://doi.org/10.1128/AAC.36.4.695
  14. Poole K.: Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother., 56(1):20-51, 2005. https://doi.org/10.1093/jac/dki171
  15. Rodriguez-Mozaz S., Chamorro S., Marti E., Huerta B., Gros M., Sanchez-Melsio A., Borrego C.M., Barcelo D., Balcazar J.L.: Occurrence of antibiotics and anti-biotic resistance genes in hospital and urban waste-waters and their impact on the receiving river. Water Res., 69:234-242, 2015. https://doi.org/10.1016/j.watres.2014.11.021
  16. Roberts M.C.: 1996. Tetracycline resistance determinants: mechanism of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev., 19(1):1-24, 1996. https://doi.org/10.1016/0168-6445(96)00021-6
  17. Roberts M.C.: Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett., 245:195-203. 2005. https://doi.org/10.1016/j.femsle.2005.02.034
  18. Ruzauskas M., Klimiene I., Armalyte J., Bartkiene E., Siugzdiniene R., Skerniskyte J., Krasauskas R., Suziedeliene E.: Composition and antimicrobial resistance profile of Gram-negative microbiota prevalent in aquacultured fish. J. Food Saf., 38(3), 2018.
  19. Schmitz F.J., Krey A., Sadurski R., Verhoef J., Milatovic D., Fluit A.C., European SENTRY Participants: Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. J. Antimicrob. Chemother., 47(2):239-240, 2001. https://doi.org/10.1093/jac/47.2.239
  20. Schwarz S., Roberts M.C., Werckenthin C., Pang Y., Lange C.: Tetracycline resistance in Staphylococcus spp. from domestic animals. Vet. Microbiol., 63(2-4):217-227, 1998. https://doi.org/10.1016/S0378-1135(98)00234-X
  21. Trzcinski K., Cooper B.S., Hryniewicz W., Dowson C. G.: Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother., 45(6):763-770, 2000. https://doi.org/10.1093/jac/45.6.763
  22. Wu S., Gao T., Zheng Y., Wang W., Cheng Y., Wang G.: Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 303(1-4):1-7, 2010 https://doi.org/10.1016/j.aquaculture.2009.12.025
  23. 해양수산부: 수산정보포털, http://fips.go.kr, 2019.