Acknowledgement
The authors are thankful to the referee for his/her valuable suggestions towards the improvement of the paper.
References
- P. Alegre, Semi-invariant submanifolds of Lorentzian Sasakian manifolds, Demonstratio Mathematica, 44 (2011), 391-406. https://doi.org/10.1515/dema-2013-0307
- A. Bejancu, CR submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142. https://doi.org/10.1090/S0002-9939-1978-0467630-0
- A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Sti. Univ. "AI. I. Cuza" Iasi Sect. I Mat. 27 (1981), 163-170.
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston-Basel-Berlin, 2002.
- B. Y. Chen and S. W. Wei, Riemannian submanifolds with concircular canonical field, Bull. Korean Math. Soc. 56 (2019), 1525-1537. https://doi.org/10.4134/bkms.b181232
- B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- B. Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc. 52 (2015), 1535-1547. https://doi.org/10.4134/BKMS.2015.52.5.1535
- D. Chinea and P. S. Prestelo, Inavriant submanifolds of a trans-Sasakian manifolds, Publ. Math. Debrecen, 38 (1991), 103-109.
- A. De, Totally geodesic submanifolds of trans-Sasakian manifolds, Proc. Estonian Acad. Sci. 62 (2013), 249-257. https://doi.org/10.3176/proc.2013.4.05
- U. C. De and A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extracta mathematicae, 23 (2008), 265-277.
- U. C. De and A. Sarkar, On pseudo-slant submanifolds of trans-Sasakian manifolds, Proc. Estonian Acad. Sci. 60 (2011), 1-11. https://doi.org/10.3176/proc.2011.1.01
- U. C. De and P. Majhi, On invariant submanifolds of Kenmotsu manifolds, J. Geom. 106 (2015), 109-122. https://doi.org/10.1007/s00022-014-0238-y
- Th. Friedrich and S. Ivanov, Almost contact manifolds with torsion and parallel spinors, J. Reine Angew. Math. 559 (2003), 217-236.
- Z. Guojing, and W. Jianguo, Invariant submanifolds and modes of non-linear autonomous systems, Appl. Math. Mech. 19 (1998), 687-693. https://doi.org/10.1007/BF02452377
- M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact metric manifolds, Tensor (N.S.), 43 (1986), 28-36.
- D. L. K. Kumar, H. G. Nagaraja and D. Kumari, Concircular curvature tensor of Kenmotsu manifolds admitting generalized Tanaka-webster connection, J. Math. Comput. Sci. 94 (2019), 447-462.
- P. Majhi and G. Ghosh, Concircular vectors field in (κ, µ)-contact metric manifolds, International Electronic Journal of Geometry, 11 (2018), 52-56.
- J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. 162 (1992), 77-86. https://doi.org/10.1007/BF01760000
- B. O'Neill, Semi-Riemannian Geometry with Application to Relativity, Pure and Applied Mathematics, 103 (1983).
- J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
- A. Sarkar and M. Sen, On invariant submanifolds of trans-sasakian manifolds, Proc. Estonian Acad. Sci. 61 (2012), 29-37. https://doi.org/10.3176/proc.2012.1.04
- S. Sevin,c, G. A. S,ekerci and A. C. Coken, Some results about concircular and concurrent vector fields on pseudo-kaehler manifolds, Journal of Physics, Conferrence series, 766 (2016), 1-6.
- S. Sular, and C. Ozgur, On some submanifolds of Kenmotsu manifolds, Chaos, Solitons and Fractals, 42 (2009), 1990-1995. https://doi.org/10.1016/j.chaos.2009.03.185
- A. T. Vanli and R. Sari, Invariants submanifolds of trans-Sasakian manifolds, DGDS, 12 (2010), 277-288.
- K. Yano and B. Y. Chen, On the Concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep. 23 (1971), 343-350. https://doi.org/10.2996/kmj/1138846372
- K. Yano and M. Kon, Generic submanifolds of sasakian manifolds, Kodai Math. J. 3 (1980), 163-196. https://doi.org/10.2996/kmj/1138036191
- H. I. Yoldas, S. E. Meric and E. Yaser, On generic submanifolds of sasakian manifold with concurrent vector field, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), 1983-1994.