DOI QR코드

DOI QR Code

200-W Continuous-wave Thulium-doped All-fiber Laser at 2050 nm

  • Received : 2021.01.26
  • Accepted : 2021.04.26
  • Published : 2021.06.25

Abstract

A 200-W continuous-wave thulium-doped all-fiber laser at 2050 nm was developed with a master oscillator power amplifier configuration. For the master oscillator, a single-mode thulium-doped fiber laser was built with fiber Bragg gratings. The operating power of the oscillator was 10.1 W at a pump power of 20.9 W, and the slope efficiency was measured to be 53.0%. All emitted wavelengths of the oscillator were located between 2049.2 nm and 2049.9 nm, and no other peaks in different wavelength ranges were observed. The maximum output power of the final amplified beam was 204.6 W at a pump power of 350.4 W. The slope efficiency of the amplifier was measured to be 58.4%.

Keywords

Acknowledgement

This work was supported by the Korea Atomic Energy Research Institute (KAERI), granted by the Korean government [Project no. 524430-21].

References

  1. K. Yin, R. Zhu, B. Zhang, G. Liu, P. Zhou, and J. Hou, "300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser," Opt. Express 24, 11085-11090 (2016). https://doi.org/10.1364/OE.24.011085
  2. G. D. Goodno, L. D. Book, and J. E. Rothenberg, "Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier," Opt. Lett. 34, 1204-1206 (2009). https://doi.org/10.1364/OL.34.001204
  3. T. Walbaum, M. Heinzig, A. Liem, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Optimization of diode-pumped thulium fiber laser with a monolithic cavity towards 278 W at 1967 nm," in Advanced Solid State Lasers Conference 2015 (Optical Society of America, 2015), paper ATh2A.28.
  4. L. Shah, R. A. Sims, P. Kadwani, C. C. C. Willis, J. B. Bradford, A. Sincore, and M. Richardson, "High-power spectral beam combining of linearly polarized Tm:fiber lasers," Appl. Opt. 54, 757-762 (2015). https://doi.org/10.1364/AO.54.000757
  5. Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, "High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity," Opt. Express 20, 17539-17544 (2012). https://doi.org/10.1364/OE.20.017539
  6. C. Yang, Y. Ju, B. Yao, Z. Zhang, T. Dai, and X. Duan, "High-power Tm3+-doped all-fiber laser operating at 1908 nm by a master oscillator power amplifier configuration with narrow spectral width," Chin. Opt. Lett. 14, 061403 (2016). https://doi.org/10.3788/COL201614.061403
  7. M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Segeev, and V. Gapontsev, "415 W single-mode CW thulium fiber laser in all-fiber format," The European Conference on Lasers and Electro-Optics 2007 (Optical Society of America, 2007), paper CP2_3.
  8. T. Walbaum, M. Heinzig, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Monolithic thulium fiber laser with 567 W output power at 1970 nm," Opt. Lett. 41, 2632-2635 (2016). https://doi.org/10.1364/OL.41.002632
  9. J. Liu, K. Liu, F. Tan, and P. Wang, "High-power thuliumdoped all-fiber superfluorescent sources," IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).
  10. W. Yao, Z. Shao, C. Shen, Y. Zhao, H. Chen, and D. Shen, "400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth," in Laser Applications Conference 2017, (Optical Society of America, 2017), paper JTu2A.33.
  11. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, "1-kW, all-glass Tm:fiber laser," Proc. SPIE 7580 (2010).
  12. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, "Tm-doped fiber lasers: fundamentals and power scaling," IEEE J. Sel. Top. Quantum Electron. 15, 85-92 (2009). https://doi.org/10.1109/JSTQE.2008.2010719
  13. A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, "High average power thulium-doped silica fiber lasers: review of systems and concepts," IEEE J. Sel. Top. Quantum Electron. 24, 0901808 (2017).
  14. D.-Q. Ouyang, J.-Q. Zhao, Z.-J. Zheng, S.-C. Ruan, C.-Y. Guo, P.-G. Yan, and W.-X. Xie, "110 W all fiber actively Q-switched thulium-doped fiber laser," IEEE Photon. J. 7, 1500407 (2015).
  15. D. Creeden, B. R. Johnson, S. D. Setzler, and E. P. Chickles, "Resonantly pumped Tm-doped fiber laser with >90% slope efficiency," Opt. Lett. 39, 470-473 (2014). https://doi.org/10.1364/OL.39.000470
  16. Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, "High power tandem-pumped thulium-doped fiber laser," Opt. Express 23, 2991-2998 (2015). https://doi.org/10.1364/OE.23.002991
  17. S. D. Jackson, "Cross relaxation and energy transfer upconversion process relevant to the functioning of 2 ㎛ Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004). https://doi.org/10.1016/j.optcom.2003.11.045
  18. A. W. Synder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, UK. 1983).