과제정보
The authors thank Taif University Researchers Supporting Project Number (TURSP-2020/230), Taif University, Taif, Saudi Arabia.
참고문헌
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Biot, M.A. (1956), "Thermo-elasticity and irreversible thermodynamics", Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351.
- Bland, D.R. (1960), The Theory of Linear Viscoelasticity, Pergamon Press, New York.
- Boit, M. (1954), "Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena", J. Appl. Phys., 25, 1385-1391. https://doi.org/10.1063/1.1721573
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", ZAMP, 19, 614-627. https://doi.org/10.1007/BF01594969.
- Chen, P.J. and Williams, W.O. (1968), "A note on non-simple heat conduction", ZAMP, 19, 614-627. https://doi.org/10.1007/BF01602278.
- El-Bary, A.A. and Atef, H.M. (2016), "On effect of viscous fractional parameter on infinite thermo-viscoelastic medium with a spherical cavity", J Comput. Theo. Nanosci., 13(1), 1027-1037. https://doi.org/10.1166/jctn.2016.4332.
- Fahmy, M.A. (2012), "The effect of rotation and inhomogeneity on the transient magneto-thermo-visco-elastic stresses in an anisotropic solid", ASME J. Appl. Mech., 79(5), 051015. https://doi.org/10.1115/1.4006258.
- Fahmy, M.A. (2013a), "Implicit-Explicit time integration DRBEM for generalized magneto-thermoelasticity problems of rotating anisotropic viscoelastic functionally graded solids", Eng. Anal. Bound. Elem., 37(1), 107-115. https://doi.org/10.1016/j.enganabound.2012.08.002.
- Fahmy, M.A. (2013b), "A three-dimensional generalized magneto-thermo-viscoelastic problem of a rotating functionally graded anisotropic solids with and without energy dissipation", Numer. Heat Transf. Part A: Appl., 63(9), 713-733. https://doi.org/10.1080/10407782.2013.751317.
- Fahmy, M.A. (2018), "Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM", J. Therm. Stress., 41, 119-138. https://doi.org/10.1080/01495739.2017.1387880.
- Fahmy, M.A. (2019a), "Modeling and optimization of anisotropic viscoelastic porous structures using CQBEM and moving asymptotes algorithm", Arab. J. Sci. Eng., 44, 1671-1684. https://doi.org/10.1007/s13369-018-3652-x.
- Fahmy, M.A. (2019b), "Design optimization for a simulation of rotating anisotropic viscoelastic porous structures using time-domain OQBEM", Math. Comput. Simul., 66, 193-205. https://doi.org/10.1016/j.matcom.2019.05.004.
- Ferry, J.D. (1980), Vescoelastic Properties of Polymers, John Wiley & Sons.
- Abdul Gaffar, S., Ramesh Reddy, P., Ramachandra Prasad, V., Subba Rao, A. and Khan, B.M. (2020), "Viscoelastic micropolar convection flows from an inclined plane with nonlinear temperature: A numerical study", J. Appl. Comput. Mech., 6(2), 183-199. https://doi.org/10.22055/JACM.2019.28695.1498.
- Ghalambaz, M., Mehryan, S.A.M., Tahmasebi, A. and Hajjar, A. (2020), "Non-Newtonian phase-change heat transfer of Nano-enhanced octadecane with meso-porous silica particles in a tilted enclosure using a deformed mesh technique", Appl. Math. Model., 85, 318-337. https://doi.org/10.1016/j.apm.2020.03.046.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
- Gross, B. (1953), Mathematical Structure of the Theories of Viscoelasticity, Vol. 27, Hermann, Paris.
- Gurtin, M.E. and Sternberg, E. (1962), "On the linear theory of viscoelasticity", Arch. Rat. Mech. Anal., 11, 291-356. https://doi.org/10.1007/BF00253942.
- Hetnaraski, R.B. and Ignaczak, J. (1990), "Generalized thermoelasticity", J. Therm. Stress., 22, 451-476. https://doi.org/10.1080/014957399280832.
- Hetnaraski, R.B. and Ignaczak, J. (1996), "Solution-like waves in a low-temperature nonlinear thermoelastic solid", Int. J. Eng. Sci., 34, 1767-1787. https://doi.org/10.1016/S0020-7225(96)00046-8.
- Ilioushin, A. (1968), "The approximation method of calculating the constructures by linear thermal viscoelastic theory", Mekhanika Polimerov Riga, 2, 168-178.
- Ilioushin, A. and Pobedria, B. (1970), "Mathematical theory of thermal visco-elasticity", Nauka, Moscow.
- Koltunov, M.A. (1976), "Creeping and relaxation", Vysshaya Shkola, Moscow.
- Kosinski, W. (1989). "Elasic waves in the presence of a new temperature scale", North-Holland Ser. Appl. Math. Mech., 35, 629-634). https://doi.org/10.1016/B978-0-444-87272-2.50099-3
- Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto-thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
- Mehryan, S.A.M., Vaezi, M., Sheremet, M. and Ghalambaz, M. (2020), "Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2)", Int. J. Heat Mass Transf., 151, 119385. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119385.
- Othman, M.I.A. (2004), "The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation times", Mech. Mech. Eng., 7, 77-87.
- Othman, M.I.A. (2005), "Generalized electromagneto-thermo-elastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time", Multi. Model. Mater. Struct., 1(3), 231-250. http://doi.org/10.1163/157361105774538557.
- Othman, M.I.A. (2009), "Generalized thermo-viscoelasticity under three theories", Mech. Mech. Eng., 13, 25-44.
- Othman, M.I.A. and Said, S.M. (2012), "The effect of rotation on two-dimensional problem of a fibre-reinforced thermoelastic with one relaxation time", Int. J. Thermophys., 33(2), 160-171. https://doi.org/10.1007/s10765-011-1109-5.
- Othman, M.I.A. and Song, Y.Q. (2008), "Effect of rotation on plane waves of the generalized electromagneto-thermo-viscoelasticity with two relaxation times", Appl. Math. Model., 32(5), 811-825. https://doi.org/10.1016/j.apm.2007.02.025.
- Othman, M.I.A., Atwa, S.Y. and Farouk, R.M. (2008), "Generalized magneto-thermo-viscoelastic plane waves under the effect of rotation without energy dissipation", Int. J. Eng. Sci., 46(7), 639-653. https://doi.org/10.1016/j.ijengsci.2008.01.018.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto- thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with threephase-lag model", Int. J. Numer. Meth. Heat Fluid Flow, 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
- Pobedria, B.E. (1984), "Coupled problems in continuum mechanics", J. Durab. Plast., 1.
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
- Sharma, J.N., Walia, V. and Gupta, S.K. (2008), "Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half-space", Int. J. Mech. Sci., 50, 433-444. https://doi.org/10.1016/j.ijmecsci.2007.10.001.
- Sheokand, S.K., Kumar, R., Kalkal, K.K. and Deswal, S. (2019), "Propagation of plane waves in an orthotropic magneto-thermo-diffusive rotating half-space", Struct. Eng. Mech., 72(4), 455-468. https://doi.org/10.12989/sem.2019.72.4.455.
- Staverman, A., Schwarzl, F. and Stuart, H. (1956), Die Physik der Hochpolymeren, B and IV Springer, Berlin.