DOI QR코드

DOI QR Code

Smart structural stability and NN based intelligent control for nonlinear systems

  • Chen, Tim (Faculty of Information Technology, Ton Duc Thang University) ;
  • Huang, Y.C. (Department of Earth Science, National Taiwan Normal University, Center of Natural Science, Kaohsiung Municipal Fushan Junior High School) ;
  • Hung, C.C. (Department of Mechanical Engineering, National Taiwan University, Faculty of Electronic Engineering, Taipei Municipal Muzha Vocational High School) ;
  • Frias, Suzanne (Department of Earth Science, National Taiwan Normal University, Center of Natural Science, Kaohsiung Municipal Fushan Junior High School) ;
  • Muhammad, J.A. (National Physical Laboratory) ;
  • Chen, C.Y.J. (Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2019.07.14
  • 심사 : 2021.03.27
  • 발행 : 2021.06.25

초록

This paper has proposed an intelligent Evolutionary Bat Algorithm (afterward, EBA) Fuzzy NN (Neural Network) controller used to ensure the asymptotic simulation stability of a mathematics nonlinear system for a smart structure. The smart evolutionary fuzzy NN model adopts an NN numerical model and the linear differential inclusion (LDI) concept. Denotation of the nonlinear dynamics is constructed by transforming the nonlinear model into a multi-rule-based sector nonlinear form of mathematics linear numerical models, and implementing a new sufficient mathematics condition whereby the asymptotic simulation stability of the intelligent structure is guaranteed by the Lyapunov mathematics function, linear matrix inequality (LMI). The high frequency is also injected as an auxiliary to stabilize these nonlinear systems. According to the relaxed method injected with dithered auxiliary, the nonlinear system can be guaranteed stable by appropriately regulating the parameters. Finally, there is a numerical resultant example with simulation results which is designated in order to precisely demonstrate the advantages of the smart intelligent controller and the proposed control scheme compared to previous schemes.

키워드

참고문헌

  1. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., Int. J., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249
  2. Braz-Cesar, M.T. and Barros, R. (2018), "Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation", Smart Struct. Syst., Int. J., 21(4), 389-395. https://doi.org/10.12989/sss.2018.21.4.389
  3. Chen, C.W. (2014a), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlinear Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9
  4. Chen, C.W. (2014b), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlinear Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8
  5. Chen, T. (2020a), "LMI based criterion for reinforced concrete frame structures", Adv. Concr. Constr., Int. J., 9(4), 407-412. https://doi.org/10.12989/acc.2020.9.4.407
  6. Chen, T. (2020b), "On the algorithmic stability of optimal control with derivative operators", Circuits Syst. Signal Process, 39(12), 5863-5881. https://doi.org/10.1007/s00034-020-01447-1
  7. Chen, T. (2020c), "An intelligent algorithm optimum for building design of fuzzy structures", Iran J. Sci. Technol, Trans Civil Eng., 44, 523-531. https://doi.org/10.1007/s40996-019-00251-5
  8. Chen, T. (2021), "Wind vibration control of stay cables using an evolutionary algorithm", Wind Struct., Int. J., 32(1), 73-86. https://doi.org/10.12989/was.2021.32.1.073
  9. Chen, T. and Chen, C.Y.J. (2019), "Intelligent fuzzy algorithm for nonlinear discrete-time systems", Transact. Inst. Measure. Control, 42(7), 1358-1374. https://doi.org/10.1177/0142331219891383
  10. Chen, B.S., Tseng, C.S. and Uang, H.J. (1999), "R Robustness design of nonlinear dynamic systems via fuzzy linear control", IEEE Trans. Fuzzy Syst., 7(5), 571-585. https://doi.org/10.1109/91.797980
  11. Chen, T., Khurram, S. and Cheng, C. (2019a), "A relaxed structural mechanics and fuzzy control for fluid-structure dynamic analysis", Eng. Comput., 36(7), 2200-2219. https://doi.org/10.1108/EC-11-2018-0522
  12. Chen, T., Khurram, S. and Cheng, C. (2019b), "Prediction and control of buildings with sensor actuators of fuzzy EB algorithm", Earthq. Struct., Int. J., 17(3), 307-315. https://doi.org/10.12989/eas.2019.17.3.307
  13. Chen, T., Babanin, A. Assim Muhammad, B. Chapron, Chen C.Y.J. (2020), "Evolved fuzzy NN control for discrete-time nonlinear systems", J. Circuit. Syst. Comput., 29(1), 2050015. https://doi.org/10.1142/S0218126620500152
  14. Chen, T., Kuo, D. and Chen, C.Y.J. (2021), "Fuzzy C-means robust algorithm for nonlinear systems", Soft Computing, 25(11), 7297-7305. https://doi.org/10.1007/s00500-021-05655-y
  15. Desoer, C.A. and Shahruz, S.M. (1986), "Stability of dithered nonlinear systems with backlash or hysteresis", Int. J. Control, 43, 1045-1060. https://doi.org/10.1080/00207178608933522
  16. Ghaffarzadeh, H. and Aghabalaei, K. (2017), "Adaptive fuzzy sliding mode control of seismically excited structures", Smart Struct. Syst., Int. J., 19(5), 577-585. https://doi.org/10.12989/sss.2017.19.5.577
  17. Gutman, S. (1979), "Uncertain dynamic systems- a Lyapunov min-max approach", IEEE Trans. Automatic Control, 24, 438-443. https://doi.org/10.1109/TAC.1979.1102073
  18. Jeong, S., Lee, J., Cho, S. and Sim, S.H. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695
  19. Kirakidis, K. (1998), "Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities", IEEE Transact. Fuzzy Syst., 9(2), 269-277. https://doi.org/10.3397/1.3097762
  20. Limanond, S. and Si, J. (1998), "Neural network-based control design: An LMI approach", IEEE Trans. Neural Networks, 9(6), 1422-1429. https://doi.org/10.1109/72.728392
  21. Pozo, F., Pujol, G. and Acho, L. (2016), "Vibration control of hysteretic base-isolated structures: an LMI approach", Smart Struct. Syst., Int. J., 17(2), 195-208. https://doi.org/10.12989/sss.2016.17.2.195
  22. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel concrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  23. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., Int. J., 29(2), 243-256. http://doi.org/10.12989/scs.2018.29.2.243
  24. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., Int. J., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547
  25. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., Int. J., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161
  26. Tanaka, K. (1995), "Stability and stabilizability of fuzzy-neural-linear control systems", IEEE Trans. Fuzzy Syst., 3(4), 438-447. https://doi.org/10.1109/91.481952
  27. Tanaka, K. and Sugeno, M. (1992), "Stability analysis and design of fuzzy control systems", Fuzzy Sets Syst., 45(2), 135-156. https://doi.org/10.1016/0165-0114(92)90113-I
  28. Tsai, P.W. and Chen, C.W. (2014), "A novel criterion for nonlinear time-delay systems using LMI fuzzy Lyapunov method", Appl. Soft Comput., 25, 461-472. https://doi.org/10.1016/j.asoc.2014.08.045
  29. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., Int. J., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385
  30. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., Int. J., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641
  31. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. http://doi.org/10.12989/scs.2018.28.4.439
  32. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., Int. J., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201
  33. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., Int. J., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363

피인용 문헌

  1. Smart structural control and analysis for earthquake excited building with evolutionary design vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.131