Acknowledgement
The study was financially aided by the Ministry of Science and Technology (MOST) of Taiwan [104-2221-E-492-021-]. The support is greatly acknowledged.
References
- Abdollahzadeh, G. and Darvishi, R. (2017), "Cyclic behavior of DCFP isolators with elliptical surfaces and different frictions", Struct. Eng. Mech., Int. J., 64(6), 731-736. https://doi.org/10.12989/sem. 2017.64.6.731
- Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. Am., 97(5), 1486-1501. https://doi.org/10.1785/0120060255
- Calvi, P.M., Moratti, M. and Calvi, G.M. (2008), "Seismic isolation devices based on sliding between surfaces with variable friction coefficient", Earthq. Spectra, 32(4), 2291-2315. https://doi.org/10.1193/ 091515EQS139M
- Chang, S.P., Makris, N., Whittaker, A.S. and Thompson, A.C.T. (2002), "Experimental and analytical studies on the performance of hybrid isolation systems", Earthq. Eng. Struct. Dyn., 31(2), 421-443. https://doi.org/10.1002/eqe.117
- Chen, P.C. and Wang, S.J. (2016), "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets", Struct. Control Health Monitor., 24(1), e1853. https://doi.org/10.1002/stc.1853
- Chen, P.C., Hsu S.C., Zhong, Y.J. and Wang, S.J. (2019), "Realtime hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. http://dx.doi.org/10.12989/sss.2019.23.1.091
- Chopra, A.K. and Chintanapakdee, C. (2014), "Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions", Earthq. Eng. Struct. Dyn., 30(12), 1769-1789. https://doi.org/10.1002/eqe.92
- Constantinou, M.C., Mokha, A. and Reinhorn, A. (1990), "Teflon bearings in base isolation II: modeling", J. Struct. Eng. ASCE, 116(2), 455-474. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455)
- Feng, M.Q., Shinozuka, M. and Fujii, S. (1993), "Friction- controllable sliding isolation system", J. Eng. Mech. ASCE, 119(9), 1845-1864. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:9(1845)
- Fenz, D.M. and Constantinou, M.C. (2006), "Behaviour of the double concave friction pendulum bearing", Earthq. Eng. Struct. Dyn., 35(11), 1403-1424. https://doi.org/10.1002/eqe.589
- Fenz, D.M. and Constantinou, M.C. (2008), "Modeling triple friction pendulum bearings for response-history analysis", Earthq. Spectra, 24(4), 1011-1028. https://doi.org/10.1193/1.2982531
- Ghobarah, A. (2001), "Performance-based design in earthquake engineering: state of development", Eng. Struct., 23(8), 878-884. https://doi.org/10.1016/S0141-0296(01)00036-0
- Harvey, Jr. P.S. and Kelly, K.C. (2016), "A review of rolling-type seismic isolation: historical development and future directions", Eng. Struct., 125, 521-531. https://doi.org/10.1016/j.engstruct.2016.07.031
- He, W.L., Agrawal, A.K. and Yang, J.N. (2003), "Novel semiactive friction controller for linear structures against earthquakes", J. Struct. Eng. ASCE, 129(7), 941-950. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(941)
- Hsu, T.Y., Huang, C.H. and Wang, S.J. (2021), "Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information", Earthq. Struct., Int. J., 20(1), 39-53. http://dx.doi.org/10.12989/eas.2021.20.1.039
- Hwang, J.S., Huang, Y.N., Hung, Y.H. and Huang, J.C. (2004), "Applicability of seismic protective systems to structures with vibration sensitive equipment", J. Struct. Eng. ASCE, 130(11), 1676-1684. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1676)
- Iemura, H., Igarashi, A., Pradono, M.H. and Kalantari, A. (2019), "Negative stiffness friction damping for seismically isolated structures", Struct. Control Health Monitor., 13(2-3), 775-791. https://doi.org/10.1002/stc.111
- Jangid, R.S. (2017), "Optimum friction pendulum system for near-fault motions", Eng. Struct., 27(3), 349-359. https://doi.org/10.1016/j.engstruct.2004.09.013
- Kumar, M., Whittaker, A.W. and Constantinou, M.C. (2015), "Characterizing friction in sliding isolation bearings", Earthq. Eng. Struct. Dyn., 44(9), 1409-1425. https://doi.org/10.1002/eqe.2524
- Lee, G.C., Ou, Y.C., Niu, T., Song, J. and Liang, Z. (2010), "Characterization of a roller seismic isolation bearing with supplemental energy dissipation for highway bridges", J. Struct. Eng. ASCE, 136(5), 502-510. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000136
- Liu, Y., Matsuhisa, H. and Utsuno, H. (2008), "Semi-active vibration isolation system with variable stiffness and damping control", J. Sound Vib., 313(1-2), 16-28. https://doi.org/10.1016/j.jsv.2007.11.045
- Lu, L.Y., Lin, G.L. and Kuo, T.C. (2008), "Stiffness controllable isolation system for near-fault seismic isolation", Eng. Struct., 30(3), 747-765. https://doi.org/10.1016/j.engstruct.2007.05.022
- Lu, L.Y., Lee, T.Y., Juang, S.Y. and Yeh, S.W. (2013), "Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study", Eng. Struct., 56, 970-982. https://doi.org/10.1016/j.engstruct.2013.06.016
- Makris, N. and Chang, S.P. (2000), "Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures", Earthq. Eng. Struct. Dyn., 29(1), 85-107. https://doi.org/10.1002/(SICI)1096-9845(200001)29:1<85::AIDEQE902>3.0.CO;2-N
- Narasimhan, S. and Nagarajaiah, S. (2005), "A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems", Eng. Struct., 27(4), 514-523. https://doi.org/10.1016/j.engstruct.2004.11.010
- Narasimhan, S. and Nagarajaiah, S. (2006), "Smart base isolated buildings with variable friction systems: H∞ controller and SAIVF device", Earthq. Eng. Struct. Dyn., 35(8), 921-942. https://doi.org/10.1002/eqe.559
- Ozbulut, O.E. and Hurlebaus, S. (2010), "Fuzzy control of piezoelectric friction dampers for seismic protection of smart base isolated buildings", Bull. Earthq. Eng., 8(6), 1435-1455. https://doi.org/10.1007/s10518-010-9187-5
- Ozbulut, O.E., Bitaraf, M. and Hurlebaus, S. (2011), "Adaptive control of base-isolated structures against near-field earthquakes using variable friction dampers", Eng. Struct., 33(12), 3143-3154. https://doi.org/10.1016/j.engstruct.2011.08.022
- Panchal, V.R. and Jangid, R.S. (2008), "Variable friction pendulum system for near-fault ground motions", Struct. Control Health Monitor., 15(4), 568-584. https://doi.org/10.1002/stc.216
- Ponzo, F.C., Cesare, A.D., Leccese, G. and Nigro, D. (2017), "Shake table testing on restoring capability of double concave friction pendulum seismic isolation systems", Earthq. Eng. Struct. Dyn., 46(14), 2337-2353. https://doi.org/10.1002/eqe.2907
- Shahbazi, P. and Taghikhany, T. (2017), "Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions", Smart Struct. Syst., Int. J., 20(1), 23-33. https://doi.org/10.12989/sss. 2017.20.1.023
- Shahi, S.K. and Baker, J.W. (2014), "An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions", Bull. Seismol. Soc. Am., 104(5), 2456-2466. http://dx.doi.org/10.1785/0120130191
- Tadjbakhsh, I. and Lin, B.C. (1987), "Displacement-proportional friction (DPF) in base isolation", Earthq. Eng. Struct. Dyn., 15(7), 799-813. https://doi.org/10.1002/eqe.4290150702
- Tsai, M.H., Wu, S.Y., Chang, K.C. and Lee, G.C. (2007), "Shaking table tests of a scaled bridge model with rolling type seismic isolation bearings", Eng. Struct., 29(9), 694-702. https://doi.org/10.1016/j.engstruct.2006.05.025
- Wang, S.J., Hwang, J.S., Chang, K.C., Shiau, C.Y., Lin, W.C., Tsai, M.S., Hong, J.X. and Yang, Y.H. (2014), "Sloped multiroller isolation devices for seismic protection of equipment and facilities", Earthq. Eng. Struct. Dyn., 43(10), 1443-1461. https://doi.org/10.1002/eqe.2404
- Wang, S.J., Yu, C.H., Lin, W.C., Hwang, J.S. and Chang, K.C. (2017), "A generalized analytical model for sloped rolling-type seismic isolators", Eng. Struct., 138, 434-446. https://doi.org/10.1016/j.engstruct.2016.12.027
- Wang, S.J., Yu, C.H., Cho, C.Y. and Hwang, J.S. (2019), "Effects of design and seismic parameters on horizontal displacement responses of sloped rolling-type seismic isolators", Struct. Control Health Monitor., 26(5). https://doi.org/10.1002/stc.2342
- Wang, S.J., Sung, Y.L. and Hong, J.X. (2020), "Sloped rolling-type bearings designed with linearly variable damping force", Earthq. Struct., Int. J., 19(2), 129-144. http://dx.doi.org/10.12989/eas.2020. 19.2.129
- Wei, B., Wang, P., He, X., Zhang, Z. and Chen, L. (2017), "Effects of friction variability on a rolling-damper-spring isolation system", Earthq. Struct., Int. J., 13(6), 551-559. https://doi.org/10.12989/eas. 2017.13.6.551
- Yurdakul, M. and Ates, S. (2018), "Stochastic responses of isolated bridge with triple concave friction pendulum bearing under spatially varying ground motion", Struct. Eng. Mech., Int. J., 65(6), 771-784. https://doi.org/10.12989/sem.2018.65.6.771