• Title/Summary/Keyword: residual displacement

Search Result 324, Processing Time 0.029 seconds

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

A hybrid deep learning model for predicting the residual displacement spectra under near-fault ground motions

  • Mingkang Wei;Chenghao Song;Xiaobin Hu
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • It is of great importance to assess the residual displacement demand in the performance-based seismic design. In this paper, a hybrid deep learning model for predicting the residual displacement spectra under near-fault (NF) ground motions is proposed by combining the long short-term memory network (LSTM) and back-propagation (BP) network. The model is featured by its capacity of predicting the residual displacement spectrum under a given NF ground motion while considering the effects of structural parameters. To construct this model, 315 natural and artificial NF ground motions were employed to compute the residual displacement spectra through elastoplastic time history analysis considering different structural parameters. Based on the resulted dataset with a total of 9,450 samples, the proposed model was finally trained and tested. The results show that the proposed model has a satisfactory accuracy as well as a high efficiency in predicting residual displacement spectra under given NF ground motions while considering the impacts of structural parameters.

Residual displacement estimation of simple structures considering soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.69-82
    • /
    • 2019
  • As the residual displacement and/or drift demands are commonly used for seismic assessment of buildings, the estimation of these values play a very critical role through earthquake design philosophy. The residual displacement estimation of fixed base structures has been the topic of numerous researches up to now, but the effect of soil flexibility is almost always omitted. In this study, residual displacement demands are investigated for SDOF systems with period range of 0.1-3.0 s for near-field and far-field ground motions for both fixed and interacting cases. The elastoplastic model is used to represent non-degrading structures. Based on time history analyses, a new simple yet effective equation is proposed for residual displacement demand of any system whether fixed base or interacting as a function of structural period, lateral strength ratio and spectral displacement.

A Study on Residual Stress Characteristics for Joint of Soft Rock in Ring Shear Tests (링 전단시험기를 이용한 연암의 절리에 대한 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.281-288
    • /
    • 2000
  • In this study, we tried to determine failure criteria for joints of soft rock using ring shear test machine. The residual stress fellowing shear behavior was determined by the result of ring shear test and direct shear test. Ring shear test with the specimens which cover a large deformation range was adapted to measure a residual stress, and was possible to present the peak stress to present the peak stress to the residual stress at the same time. Residual stress is defined a minimal stress of specimens with a large displacement and the result of the peak residual stress is shown by a size of displacement volume. Therefore, the residual stress in soil was decided by shear stress of maximum shear stress - shear displacement(angle) based on the test result of a hyperbolic function ((equation omitted), a, b = experimental constant). In this study, it was proved that the residual stress of rock joint can be determined by using of this method.

  • PDF

A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests (링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement (변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법)

  • Shin, Dong Il;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement

A STUDY ON THE STRESS DISTRIBUTION OF ABUTMENT TEETH AND RESIDUAL RIDGE AREA BETWEEN TELESCOPIC AND CLASP TYPE RPD BY FEM METHOD (telescope형 및 Clasp형 유지장치를 이용한 국소의치 지지조직의 응력분포에 관한 삼차원 유한요소법적 연구)

  • Koak, Jai-Young;Kim, Kwang-Nam;Chang, Ik-Tae;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.104-126
    • /
    • 1999
  • The purpose of this study was to compare and evaluate the stress distribution and displacement developed in the abutment teeth and residual ridge area by madibular unilateral distal extension removable partial denture with 2 different retainer designs. The retainers on right and left canine and right 2nd molar were Alters clasp in one model and telescopic crown in the other model. The stress distribution of abutment teeth and residual ridge area on two model were compared and analyzed with 3-dimensional finite element method. 150N and 400N forces were applied vertically, 30 degree and horizontally on the central fossa area of left 1st molar of the removable partial denture, and then stress distribution patterns were analyzed and compared. The results were as follows 1. As the magnitude and angulation of applied force were increased, the magnitude of stress on the right and central residual ridge area and the right canine of the telescopic type increased and comparing to those of the Alters clasp type. 2. As the magnitude and angulation of applied force were increased, the mesial direction of displacement on the right residual ridge area and the right tooth of the telescopic type increased and the distal direction of displacement on left residual ridge area and the left canine increased comparing to those of Akers clasp type. 3. As the vertical force was applied, the distal direction of the displacement of the right tooth were greater and that of the left canine was smaller and the upward displacement of the right canine was greater in telescopic partial denture than those of Akers clasp type. 4. As the 30 degree force was applied, the mesial direction of the displacement of the right tooth were greater and the distal direction of the displacement of the left canine was smaller and the upward displacement of the right canine was greater in telescopic partial denture than those of Akers clasp type. In the horizontal force the results were same in right area tooth but the distal direction of displacement was greater in left canine. 5. In both removable partial dentures, as the magnitude and degree of force were increased, the stress and displacement were increased. The compressive force was dominative than the ten sile force. 6. In both removable partial dentures, the magnitude of stress was greater on mucosal tissue area than that of the alveolar bone area on distal extension residual ridge area but the result was reversed on anterior residual ridge area. The displacement was always greater on mucosal tissue area than that of alveolar bone area.

  • PDF

Variation Characteristics of Stiffness and Impact Resistance under Conastruction Height of Gypsum Board Wall (석고보드 벽체의 시공높이에 따른 수평하중저항성 및 내충격성 변동 특성)

  • Song, Jung Hyeon;Kim, Ki Jun;An, Hong Jin;Shin, Yun Ho;Ji, Suk Won;Choi, Soo Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.184-185
    • /
    • 2014
  • The purpose of this study is to experimentally evaluate the variation characteristics of stiffness and impact resistance under the construction height of gypsum board wall at the actual construction site. The method suggested in previous study was applied on the test method of horizontal load resistance and impact resistance. As a result of horizontal load resistance test, when the wall height is 2,400 mm, the maximum displacement is 13.6 mm and residual deformation is 0.5 mm, and when the wall height is 3,000 mm, the maximum displacement is 31.3 mm and the residual displacement is 6.8 mm. As a result of impact resistance test, the residual deformation of each specimen at 20 cm of fall height were 1.02 mm and 0.08 mm, respectively, the residual deformation at 40 cm of fall height were 1.58 mm and 0.35 mm, respectively, and the residual deformation at 60 cm of fall height were 2.23 mm and 2.48 mm, respectively.

  • PDF

Ductility demand of partially self-centering structures under seismic loading: SDOF systems

  • Hu, Xiaobin;Zhang, Yunfeng
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.365-381
    • /
    • 2013
  • In this paper, a numerical simulation study was conducted on the seismic behavior and ductility demand of single-degree-of-freedom (SDOF) systems with partially self-centering hysteresis. Unlike fully self-centering systems, partially self-centering systems display noticeable residual displacement after unloading is completed. Such partially self-centering behavior has been observed in a number of recently researched self-centering structural systems with energy dissipation devices. It is thus of interest to examine the seismic performance such as ductility demand of partially self-centering systems. In this study, a modified flag-shaped hysteresis model with residual displacement is proposed to represent the hysteretic behavior of partially self-centering structural systems. A parametric study considering the effect of variations in post-yield stiffness ratio, energy dissipation coefficient, and residual displacement ratio on the displacement ductility demand of partially self-centering systems was conducted using a suite of 192 scaled ground motions. The results of this parametric study reveal that increasing the post-yield stiffness, energy dissipation coefficient or residual displacement ratio of the partially self-centering systems generally leads to reduced ductility demand, especially for systems with lower yield strength.

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.