참고문헌
- Alzabeebee, S. and Chapman, D.N. (2020), "Evolutionary computing to determine the skin friction capacity of piles embedded in clay and evaluation of the available analytical methods", Transport. Geotech., 100372. https://doi.org/10.1016/j.trgeo.2020.100372.
- Jebur, A.A., Atherton, W., Al Khaddar, R.M. and Loffill, E. (2018), "Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load", Eur. J. Environ. Civ. Eng., 1-23. https://doi.org/10.1080/19648189.2018.1531269.
- Amiri, S.T., Dehghanbanadaki, A., Nazir, R. and Motamedi, S. (2020), "Unit composite friction coefficient of model pile floated in kaolin clay reinforced by recycled crushed glass under uplift loading", Transport. Geotech., 22, 100313. https://doi.org/10.1016/j.trgeo.2019.100313.
- Bentley, K.J. and Naggar, M.H.E. (2000), "Numerical analysis of kinematic response of single piles", Can. Geotech. J., 37(6), 1368-1382. https://doi.org/10.1139/t00-066.
- Belleza, I. (2020), "Closed-form expressions for a rigid passive pile in a two-layered soil", Geotech. Lett., 10(2), 242-249. https://doi.org/10.1680/jgele.19.00250.
- Chen, Y., Deng, A., Lu, F. and Sun, H. (2020), "Failure mechanism and bearing capacity of vertically loaded pile with partially-screwed shaft: Experiment and simulations", Comput. Geotech., 118, 103337. https://doi.org/10.1016/j.compgeo.2019.103337.
- Chu, D.B., Stewart, J.P., Boulanger, R.W. and Lin, P.S. (2008), "Cyclic softening of low-plasticity clay and its effect on seismic foundation performance", J. Geotech. Geoenviron. Eng., 134, 1595-1608. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:11(1595).
- Deb, P. and Pal, S.K. (2019), "Numerical analysis of piled raft foundation under combined vertical and lateral loading", Ocean Eng., 190, 106431. https://doi.org/10.1016/j.oceaneng.2019.106431.
- Dehghanbanadaki, A., Motamedi, S. and Ahmad, K. (2020), "FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns", Geomech. Eng., 20(1), 75-86. https://doi.org/10.12989/gae.2019.20.1.075.
- Di Laora, R., de Sanctis, L. and Aversa, S. (2019), "Bearing capacity of pile groups under vertical eccentric load", Acta Geotech., 14(1), 193-205. https://doi.org/10.1007/s11440-018-0646-5.
- Eslami, A., Aflaki, E. and Hosseini, B. (2011), "Evaluating CPT and CPTu based pile bearing capacity estimation methods using Urmiyeh Lake Causeway piling records", Scientia Iranica, 18(5), 1009-1019. https://doi.org/10.1016/j.scient.2011.09.003.
- Finno, R.J., Lawrence, S.A., Allawh, N.F. and Harahap, I.S. (1991), "Analysis of performance of pile groups adjacent to deep excavation", J. Geotech. Eng., 117(6), 934-955. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(934).
- Garala, T.K. and Madabhushi, G.S. (2021), "Role of pile spacing on dynamic behavior of pile groups in layered soils", J. Geotech. Geoenviron. Eng., 147(3), 04021005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002483.
- Harandizadeh, H., Armaghani, D.J. and Khari, M. (2019), "A new development of ANFIS-GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-019-00849-3.
- Hazzar, L., Hussien, M.N. and Karray, M. (2017), "On the behaviour of pile groups under combined lateral and vertical loading", J. Geotech. Geoenviron. Eng., 131, 174-185. https://doi.org/10.1016/j.oceaneng.2017.01.006.
- Hoang, L., Matsumoto, T. and Dao, K. (2020), Settlement and Pile Response in a Long-Term Vertically Loaded Piled Raft Foundation Model on Saturated Clay-Experimental Study, in Geotechnics for Sustainable Infrastructure Development, Springer, Singapore, 33-40.
- Jeong, S., Seo, D. and Kim, Y. (2009), "Numerical analysis of passive pile groups in offshore soft deposits", Comput. Geotech., 36(7), 1164-1175. https://doi.org/10.1016/j.compgeo.2009.05.003.
- Karatzia, X. and Mylonakis, G. (2016), "Discussion of "kinematic bending of fixed-head piles in nonhomogeneous soil" by Raffaele Di Laora and Emmanouil Rovithis", J. Geotech. Geoenviron. Eng., 142(2), 07015042. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001450.
- Karkush, M.O. and Jafar, G.S. (2015), "Effects of surcharge on the behavior of passive piles in sandy soil", Int. J. Sci. Eng. Res., 6(10), 392-397.
- Khari, M., Armaghani, D.J. and Dehghanbanadaki, A. (2019a), "Prediction of lateral deflection of small scale piles using hybrid PSO-ANN model", Arab. J. Sci. Eng., 45, 3499-3509. https://doi.org/10.1007/s13369-019-04134-9.
- Khari, M., Dehghanbanadaki, A., Motamedi, S. and Armaghani, D.J. (2019b), "Computational estimation of lateral pile displacement in layered sand using experimental data", Measurement, 146, 110-118. https://doi.org/10.1016/j.measurement.2019.04.081.
- Kim, B.T., Kim, N.K., Lee, W.J. and Kim, Y.S. (2004), "Experimental load-transfer curves of laterally loaded piles in Nak-Dong River sand", J. Geotech. Geoenviron. Eng., 130, 416-425. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(416).
- Li, F., Tian, P., Wang, L. and Chen, M. (2020), "Investigation on lateral bearing capacity of monopile under combined vertical-lateral loads and scouring condition", Mar. Georesour. Geotec., 39(4), 505-514. https://doi.org/10.1080/1064119X.2020.1719562.
- Lu, W. and Zhang, G. (2018), "Influence mechanism of verticalhorizontal combined loads on the response of a single pile in sand", Soils Found., 58, 1228-1239. https://doi.org/10.1016/j.sandf.2018.07.002.
- Maheshwari, B.K., Truman, K.Z., Naggar, M.H.E. and Gould, P.L. (2004), "Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations", Can. Geotech. J., 41(1), 118-133. https://doi.org/10.1139/t03-073.
- Medina, C., Alamo, G.M., Padron, L.A., Aznarez, J.J. and Maeso, O. (2019), "Application of regression models for the estimation of the flexible-base period of pile-supported structures in continuously inhomogeneous soils", Eng. Struct., 190, 76-89. https://doi.org/10.1016/j.engstruct.2019.03.112.
- Moayedi, H., Gor, M., Khari, M., Foong, L.K., Bahiraei, M. and Bui, D.T. (2020), "Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength", Measurement, 156, 107576. https://doi.org/10.1016/j.measurement.2020.107576.
- Nagao, T. and Lu, P. (2020), "A simplified reliability estimation method for pile-supported wharf on the residual displacement by earthquake", Soil Dyn. Earthq. Eng., 129, 105904. https://doi.org/10.1016/j.soildyn.2019.105904.
- Nejad, F.P., Jaksa, M.B., Kakhi, M. and McCabe, B.A. (2009), "Prediction of pile settlement using artificial neural networks based on standard penetration test data", Comput. Geotech., 36(7), 1125-1133. https://doi.org/10.1016/j.compgeo.2009.04.003.
- Nguyen, D. and Phan, D. (2020), A Method for the Evaluation of Ultimate Lateral Load Capacity of Pile Foundation, in Geotechnics for Sustainable Infrastructure Development. Springer, Singapore.
- Nguyen, H.H., Khabbaz, H., Fatahi, B. and Kelly, R. (2016), "Bridge pile response to lateral soil movement induced by installation of controlled modulus columns", Procedia Eng., 143, 475-482. https://doi.org/10.1016/j.proeng.2016.06.060.
- Song, Y.S., Hong, W. and Woo, K. (2012), "Behaviour and analysis of stabilizing piles installed in a cut slope during heavy rainfall", Eng. Geol., 129-130, 56-67. https://doi.org/10.1016/j.enggeo.2012.01.012.
- Stacul, S. and Squeglia, N. (2020), "Simplified assessment of pile-head kinematic demand in layered soil", Soil Dyn. Earthq. Eng., 130, 105975. https://doi.org/10.1016/j.soildyn.2019.105975.
- Wang, L., Zhang, P., Ding, H., Tian, Y. and Qi, X. (2020), "The uplift capacity of single-plate helical pile in shallow dense sand including the influence of installation", Mar. Struct., 71, 102697. https://doi.org/10.1016/j.marstruc.2019.102697.
- Wang, M.C. and Liao, W.P. (1987), "Active length of laterally loaded piles", J. Geotech. Eng., 113(9), 1044-1048. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:9(1044).
- White, D.J., Thompson, M.J., Suleiman, M.T. and Schaefer, V.R. (2008), "Behavior of slender piles subject to free-field lateral soil movement", J. Geotech. Geoenviron. Eng., 134(4), 428-436. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(428).
- Wu, G. and Finn, W.D.L. (1997), "Dynamic elastic analysis of pile foundations using finite element method in the frequency domain", Can. Geotech. J., 34(1), 34-43. https://doi.org/10.1139/t96-87.
- Zhang, W. and Goh, A.T. (2016), "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", Geosci. Front., 7(1), 45-52. https://doi.org/10.1016/j.gsf.2014.10.003.
- Zhou, J.J., Yu, J.L., Gong, X.N., Zhang, R.H. and Yan, T.L. (2020), "Influence of soil reinforcement on the uplift bearing capacity of a pre-stressed high-strength concrete pile embedded in clayey soil", Soils Found., 9(6), 2367-2375. https://doi.org/10.1016/j.sandf.2019.12.002.