• Title/Summary/Keyword: layered sandy soil

Search Result 9, Processing Time 0.02 seconds

Breakthrough Curves and Miscible Displacement of Cadmium Through Double-Layered Reclaimed Soils Amended with Macroporous Granule

  • Kim, Hye-Jin;Ryu, Jin-Hee;Kim, Si-Ju;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Transport of heavy metals such as Cd is affected by several rate-limiting processes including adsorption and desorption by exchange reactions in soils. In this study, column transport and batch kinetic experiments were performed to assess Cd mobility in a double-layered soil with a reclaimed saline and sodic soil (SSS) as top soil and macroporous granule (MPG) as a bottom layer. For individual soil layer having different physical and chemical properties, Cd was considered to be nonlinear reactivity with the soil matrix in layered soils. The dispersive equation for reactive solutes was solved with three types of boundary conditions for the interface between soil layers. The adsorption of Cd with respect to the saline-sodic sandy loam and the MPG indicated that the nature of the sites or the mechanisms involved in the sorption process of Cd was different and the amounts of Cd for both of samples increases with increasing amounts of equilibrium concentration whereas the amount of Cd adsorbed in saline-sodic sandy loam soil was higher than that in MPG. The results of breakthrough curve indicating relative Cd retardation accompanied by layer material and sequence during leaching showed that the number of pore volumes to reach the maximum relative concentration of 1 increased in the order of MPG, SSS, and double layer of SSS-MPG. Breakthrough curves (BTCs) from column experiments were well predicted with our double-layered model where independently derived solute physical and retention parameters were implemented.

Influence of Pile Cap On The Behaviors of End Bearing Pile Groups (말뚝캡이 선단지지 무리말뚝의 지지거동에 미치는 영향)

  • 최영석;이수형;정충기;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.245-252
    • /
    • 2000
  • Model tests on free standing pile groups and piled footings with varying a pile spacing in two layered soils are carried out. The influence of pile cap on the behaviors of end bearing pile groups is analyzed by comparing the bearing behavior in piled footings with those in a single pile, a shallow footing(cap alone) and free standing pile groups. From the test results, it is found that the bearing characteristics of cap-soil-pile system are related with load levels and pile spacings. Before yield, the bearing resistance by cap is not fully mobilized, however, as the applied load increases, the bearing resistance of cap approaches to that of cap alone and settlement hardening occurs after yield due to the compaction caused by the contact pressure between cap and soil. By the cap-soil-pile interaction, shaft friction and point resistance of piles considerably increase with dependency of pile spacings. In two layered soil, the increasing effect of dilatancy in dense sandy soil adjacent to pile tips, increases the point resistance of pile.

  • PDF

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

A numerical analysis of precipitation recharge in the region of monsoon climates using an infiltration model

  • Koo, Min-Ho;Kim, Yongje
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.163-167
    • /
    • 2003
  • Based on the transient finite difference solution of Richards' equation, an infiltration model is developed to analyze temporal variation of precipitation recharge in the region of monsoon climates. Simulation results obtained by using time series data of 20-year daily precipitation and pan evaporation indicate that a linear relationship between the annual precipitation and the annual recharge holds for the soils under the monsoon climates with varying degrees of the correlation coefficient depending on the soil types. A sensitivity analysis reveals that the water table depth has little effects on the recharge for the sandy soil, whereas, for the loamy and silty soils, rise of the water table at shallow depths causes increase of evaporation by approximately 100㎜/yr and a corresponding decrease in recharge. A series of simulations for two-layered soils illustrate that the amount of recharge is dominantly determined by the soil properties of the upper layer, although the temporal variation of recharge is affected by both layers.

  • PDF

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF

Ecological Characteristics and Changes in Plant Community Structure in Mt. Cheongryang, Incheon (인천시 청량산의 생태적 특성과 식생구조의 변화)

  • Lee, Sang-Hee;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.74-88
    • /
    • 2021
  • In the present study, the characteristics and changes in the vegetation of Mt. Cheongryang, Inchon, were examined to identify and determine appropriate ways to restore the health of the urban forest and to preserve its vegetation. The vegetation of the community of Quercus mongolica (Mongolian oak) on Mt. Cheongryang appeared to decrease in response to the control of the wilt disease of oak trees. The communities of Sorbus alnifolia (Korean mountain ash) and Styrax japonicus (Snowbell tree) have increased. Pinus rigida (Pitch Pine) had its overall territory decrease, but the current state of the Pinus rigida (Pitch Pine) was estimated to be stable due to its dominance as a tree layer species. In regards to Robinia pseudoacacia (Black Locust), the urbanized species of Sorbus alnifolia (Korean mountain ash), and Styrax japonicus (Snowbell tree), their areas have increased with the appearance of Magnolia obovate (Whiteleaf Japanese Magnolia). The biodiversity of Mt. Cheongryang has decreased by simplifying species in the tree layer and understory species thereof, and the initial success of species in marginal areas has increased. The absence of potential succession was attributed to the termination of ecological succession; thereby, the current vegetation structure was concluded to be remaining as it is for the time being. Soil texture in the mountain primarily consisted of sandy loam or loamy sand; the pH of the soil was in the range 4.26-4.86, rendering a mean pH of 4.59. The content of organic matter (O.M.) appeared having a distributing range of 2.18-9.60%, rendering a mean value of 4.33%. To promote species diversity, several methods are suggested, such as prevention of soil acidification, selecting nationally-grown trees from moist soil or valleys for afforestation, preventing species appearing due to urbanization or excessive growth, protecting the understory vegetation and species with hygropreference, and managing the forest to maintain a multi-layered vegetation structure.

A Study on Drainage Capacity of PBD Installed in Deep Soft Ground (대심도 연약지반에 적용되는 PBD의 통수능에 관한 연구)

  • Byun, Yo-Seph;Ahn, Byung-Je;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.67-76
    • /
    • 2009
  • The problems of bearing capacity, settlement and shear deformation occur when constructing a structure such as harbor, airport and bridge on soft ground of marine clay, silty clay or sandy soil. Various ground improvement methods are applied to obtain preceding settlement of soft ground and strength increase. In this study, to analyze the applicability of PBD method in deep soft ground, the compound drainage capacity test was operated in comparison with SD. As a result of the test, a minimum drainage capacity of drain material was estimated to be more than $10\;cm^3/sec$ at a more than $400\;kN/m^2$ and less than $5\;cm^3/sec$ at a more than $500\;kN/m^2$ confining pressure in case of single core PBD. In case of double core PBD, it was estimated to be more than $10\;cm^3/sec$ at a more than $500\;kN/m^2$ confining pressure.

The Study on Foundation Remains(Jeoksim) According to Types of Buildings of Gyeongbok Palace (경복궁 건물 유형에 따른 적심 연구)

  • Choi, In Hwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.154-175
    • /
    • 2009
  • At the present state, studies on Gyeongbok palace are being done with history of architecture, records, and art. However, these studies have limits that they can only depend on existing buildings and record, which make it hard to research whole aspect of palaces. The foundation remains(Jeoksim) of Gyeongbok palace in the ground gives important clues that can fill the gaps of these studies. Thus I analysed jeoksim of Gyeongbok palace, assorted them by type, scale, material, and construction method. I examined jeoksim used by various types of building, and looked at changes by periods. Jeoksims are classified in 21 types. The foundation(jeoksim) varies according to types of buildings, building types and material of jeoksim also varies along the periods, and the fact proves certain peroid of time has its own jeoksim style in fashion. Jeoksims of Gyeongbok palace are divided into round-shape(I), rounded square-shape(II), rectangular-shape(III), square-shape(IV), and whole foundation of building(V) by the plane shape. They can be divided again into 21 types by construction techniques and materials used. During early Joseon(I), only three types of jeoksim; round-shape riprap jeoksim(1-1), II-1(rounded square-shape), II-2a(rounded square-shape riprap+roofingingtile brick), had been built, but as 19th century begun, all 21 types of jeoksim had built. In 19th century during Emperor Gojong, different types of jeoksim by periods were built, and especially different materials were used. During Gojong year 2(1865)~year 5(1868), in which Gyeongbok palace were rebuilt, 7 out of 10 types of jeoksim used piece of roofinging tile and brick mixture, in contrast, during Gojong year 10(1873)~13(1876), or 25(1888), 3 out of 5 types of jeoksim used sandy soil with mixture of plaster. Meanwhile palace buildings have different names by the class of owner and use such as Jeon, Dang, Hap, Gak, Jae, Heon, Nu, and Jeong, which were classified by types and buildings were built according to each level. With an analysis of jeoksim by its building types, I ascertained that jeoksim were built differently in accordance to building types(Jeon, Dang, Hap, Gak, Jae, Heon, Nu, and Jeong). By the limitation of present document, only some types of buildings such as Jeon, Dang, Gak, Bang were confirmed, as for Jeon and Gak, square-shape(IV) built with rectangular parallelepiped stone, and for Dang and Bang, rounded square-shape(IV) built with roofinginginging tile and riprap were commonly used. From the fact that other jeoksim with uncertain building names, were mostly built in early Joseon, we learn that round-shape riprap jeoksim(1-1) were commonly built. Therefore, the class of building was higher if the owner was in higher class, jeoksim is also considered to be built with the strongest and best material. And for Dang and Bang, rounded square-shape jeoksim were used, Dang has lots of II-2a (riprap + piece of roofing tile and brick rounded square-shape) type which mainly used riprap and piece of roofing tile and brick, but Bang has lots of II-2b (piece of roofing tile and brick+(riprap+piece of roofing tile and brick rounded square-shape), which paved piece of roofing tile and brick by 15~20cm above. These jeoksim by building types were confirmed to have changed its construction type by period. As for Jeon and Gak, they were built with round-shape riprap jeoksim(1-1) in early Joseon(14~15c), but in late Joseon(19c), various types of Jeoksim were built, especially square-shape(IV) were commonly built. For Dang, only changes in later Joseon were confirmed, jeoksim built in Gojong year 4(1867) mostly used mixture of riprap and piece of roofing tile and brick. In Gojong year 13(1876) or year 25(1888), unique type of plaster with sand and coal and soil layered jeoksim were built that are not found in any other building types. Through this study, I learned that various construction types of jeoksim and material were developed in later Joseon compare to early Joseon. This states that construction technique of building foundation of palace has upgraded. Above all, I learned jeoksim types are all different for various kinds of buildings. This tells us that when they constructed foundation of building, they used pre-calculated construction technique.