DOI QR코드

DOI QR Code

Shear behavior of EPS geofoam reinforced with polypropylene fiber

  • Received : 2021.01.16
  • Accepted : 2021.05.19
  • Published : 2021.06.10

Abstract

The EPS geofoam as a lightweight material has been widely used in recent years to boost the performance of geotechnical structures. Both the internal and external stability of the fills made by the EPS blocks should be met. Overlying concrete slabs and thick pavements or applying denser EPS blocks provide internal stability of EPS geofoam lightweight fills by reducing the internal vertical stress within the EPS blocks. As an alternative way, in this study, new composite material is introduced by using the polypropylene fiber to reinforce the EPS geofoam in the factory as an attempt to improve the mechanical properties of the EPS geofoam. The composite material was fabricated in different fiber contents by solidifying the mixture of fiber and geofoam beads using controlled heat and temperature. Then, the behavior of the composite was studied using a series of direct shear tests. The results show that including fiber leads to a rise in the shear strength and a significant decline in the compressibility of the reinforced EPS geofoam. For the geofoam reinforced with 80% fiber content, up to 23.3% increase in the shear strength and 57.6% reduction in the vertical displacement (Δz) were observed in the laboratory. In addition, while the change in the composite's cohesion is largely decreased, the friction angle of the composite shows an increasing trend with fiber content increase. A maximum of 12.6% reduction in the cohesion and 100% increase in the internal friction angle of the reinforced material were observed in the laboratory.

Keywords

References

  1. Abdelrahman, G.E, Duttine, A. and Tatsuoka, F. (2008), "Interface friction properties of EPS geofoam blocks from direct shear tests", Proceedings of the Research Symposium on Characterization and Behavior of Interfaces, Atlanta, U.S.A., September.
  2. Abdelrahman, G.E. and Elragi, A.F. (2006), "Behavior improvement of footings on soft clay utilizing geofoam", Proceedings of the 10th Arab Structural Engineering Conference, Kuwait, November.
  3. AbdelSalam, S.S. and Azzam, S.A. (2016), "Reduction of lateral pressures on retaining walls using geofoam inclusion", Geosynth. Int., 23(6), 395-407. https://doi.org/10.1680/jgein.16.00005.
  4. AbdelSalam, S.S., Jama, R.A. and Salah, M.A. (2019), "EPS inclusion to reduce vertical stresses on shallow tunnels", Geosynth. Int., 26(2), 121-135. https://doi.org/10.1680/jgein.18.00042.
  5. Akay, O. (2016), "Slope stabilisation using EPS block geofoam with internal drainage system", Geosynth. Int., 23(1), 9-22. https://doi.org/10.1680/jgein.15.00028.
  6. Akay, O., Ozer, A.T., Fox, G.A., Bartlett, S.F. and Arellano, D. (2013), "Behavior of sandy slopes remediated by EPS-block geofoam under seepage flow", Geotext. Geomembranes, 37, 81-98. https://doi.org/10.1016/j.geotexmem.2013.02.005.
  7. Al-Naddaf, M., Han, J., Xu, C. and Rahmaninezhad, S.M. (2019) "Effect of geofoam on vertical stress distribution on buried structures subjected to static and cyclic footing loads", J. Pipeline Syst. Eng. Pract., 10(1), 04018027. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000355.
  8. Al-Refeai, T.O. (1991), "Behavior of granular soils reinforced with discrete randomly oriented inclusions", Geotext. Geomembranes, 10(4), 319-333. https://doi.org/10.1016/0266-1144(91)90009-L.
  9. Arabani, M. and Haghsheno, H. (2020), "The effect of polymeric fibers on the mechanical properties of cement-stabilized clay soils in Northern Iran", Int. J. Geotech. Eng., 14(5), 557-568. https://doi.org/10.1080/19386362.2019.1658057.
  10. Arellano, D., Stark, T.D., Horvath, J.S. and Leshchinsky, D. (2011), "Guidelines for geofoam applications in slope stability projects", Preliminary Draft Final Report, NCHRP Project No. 24-11 (02), Transportation Research Board of the National Academies.
  11. Arellano, D., Tatum, J.B., Stark, T.D., Horvath, J.S. and Leshchinsky, D. (2010), "Framework for design guideline for expanded polystyrene block geofoam in slope stabilization and repair", Transport. Rese. Rec., 2170(1), 100-108. https://doi.org/10.3141/2170-12.
  12. Arenicz, R.M. and Chowdhury, R.N. (1988), "Laboratory investigation of earth walls simultaneously reinforced by strips and random reinforcement", Geotech. Test. J., 11(4), 241-247. https://doi.org/10.1520/GTJ10654J.
  13. Arvin, M.R., Abbasi, M. and Khalvati Fahliani, H. (2021), "Shear behavior of geocell-geofoam composite", Geotext. Geomembranes, 49, 188-195. https://doi.org/10.1016/j.geotexmem.2020.09.012.
  14. Atmatzidis, D.K., Missirlis, E.G. and Theodorakopoulos, E.B. (2001), "Shear resistance on EPS geofoam block surfaces", Proceedings of the 3rd Annual Conference on EPS Geofoam, Patras, Greece.
  15. Aytekin, M. (1997), "Numerical modeling of EPS geofoam used with swelling soil", Geotext. Geomembranes, 15(1-3),133-146. https://doi.org/10.1016/S0266-1144(97)00010-1.
  16. Barrett, J.C. and Valsangkar, A.J. (2009), "Effectiveness of connectors in geofoam block construction", Geotext. Geomembranes, 27(3), 211-216. https://doi.org/10.1016/j.geotexmem.2008.11.010.
  17. Bartlett, S.F. and Lawton, E.C. (2008), "Evaluating the seismic stability and performance of freestanding geofoam embankment", Proceedings of the 6th National Seismic Conference on Bridges and Highways, Charleston, South Carolina, U.S.A., July.
  18. Bathurst, R.J., Keshavarz, A., Zarnani, S. and Take, W.A. (2007), "A simple displacement model for response analysis of EPS geofoam seismic buffers", Soil Dyn. Earthq. Eng., 27(4), 344-353. https://doi.org/10.1016/j.soildyn.2006.07.004.
  19. Beju, Y.Z. and Mandal, J.N. (2017), "Expanded polystyrene (EPS) geofoam: Preliminary characteristic evaluation", Procedia Eng., 189, 239-246. https://doi.org/10.1016/j.proeng.2017.05.038.
  20. Choi, SG., Wang, K. and Chu, J. (2016), "Properties of biocemented, fiber reinforced sand", Construct. Build. Mater., 120, 623-629. https://doi.org/10.1016/j.conbuildmat.2016.05.124.
  21. Consoli, N.C., Casagrande, M.D.T. and Coop, M.R. (2007a) "Performance of a fibre-reinforced sand at large shear strains", Geotechnique, 57(9), 751-756. https://doi.org/10.1680/geot.2007.57.9.751.
  22. Consoli, N.C., Heineck, K.S., Casagrande, M.D.T. and Coop, M.R. (2007b), "Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths", J. Geotech. Geoenviron. Eng., 133(11), 1466-1469. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1466).
  23. Consoli, N.C., Prietto, P.D. and Ulbrich, L.A. (1998), "Influence of fiber and cement addition on behavior of sandy soil", J. Geotech. Geoenviron. Eng.,124(12), 1211-1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211).
  24. Cristelo, N., Cunha, V.M., Gomes, A.T., Araujo, N., Miranda, T. and de Lurdes Lopes, M. (2017), "Influence of fibre reinforcement on the post-cracking behaviour of a cement-stabilised sandy-clay subjected to indirect tensile stress", Construct. Build. Mater., 138, 163-173. https://doi.org/10.1016/j.conbuildmat.2017.02.010.
  25. Dabiri, R. and Notash, N.H. (2020), "Evaluation of geofoam effects on seismic response in cantilever retaining wall", Geotech. Geol. Eng., 38(2), 2097-2116. https://doi.org/10.1007/s10706-019-01151-1.
  26. Diab, A.A., Najjar, S.S., Sadek, S., Taha, H., Jaffal, H. and Alahmad, M. (2018), "Effect of compaction method on the undrained strength of fiber-reinforced clay", Soils Found., 58(2), 462-480. https://doi.org/10.1016/j.sandf.2018.02.013.
  27. Diambra, A. and Ibraim, E. (2015), "Fibre-reinforced sand: interaction at the fibre and grain scale", Geotechnique, 65(4), 296-308. https://doi.org/10.1680/geot.14.P.206.
  28. Diambra, A., Russell, A.R., Ibraim, E. and Muir Wood, D. (2007) "Determination of fibre orientation distribution in reinforced sands", Geotechnique, 57(7), 623-628. https://doi.org/10.1680/geot.2007.57.7.623.
  29. Duskov, M. and Scarpas, A. (1997) "Three-dimensional finite element analysis of flexible pavements with an (open joint in the) EPS sub-base", Geotext. Geomembranes, 15(1-3), 29-38. https://doi.org/10.1016/S0266-1144(97)00005-8.
  30. Elragi, A.F. (2000), "Selected engineering properties and applications of EPS geofoam", Corpus ID: 55700044.
  31. Ertugrul, O.L. and Trandafir, A.C. (2014), "Seismic earth pressures on flexible cantilever retaining walls with deformable inclusions", J. Rock Mech. Geotech. Eng., 6(5), 417-427. https://doi.org/10.1016/j.jrmge.2014.07.004.
  32. Esveld, C., Markine, V. and Duskov, M. (2001), "Feasibility of EPS as a lightweight sub-base material in railway track structures", Proceedings of the 3rd International Conference on EPS Geofoam, Salt Lake City, Utah, December.
  33. Gao, H., Liu, J. and Liu, H. (2011), "Geotechnical properties of EPS composite soil", Int. J. Geotech. Eng., 5(1), 69-77. https://doi.org/10.3328/IJGE.2011.05.01.69-77.
  34. Gendy, M.E., Araby, I.E., Kamash, W.E., Sallam, E. and Labban, A.E. (2018), "Effect of using EPS geofoam on deformation behavior of square footings on clay subjected to static and dynamic loads: experimental study", Proceedings of the 5th International Conference on Geofoam Blocks in Construction Applications, Kyrenia, Cyprus, May.
  35. Ghotbi Siabil, S.M.A., Moghaddas Tafreshi, S.N., Dawson, A.R. and Parvizi Omran, M. (2019), "Behavior of expanded polystyrene (EPS) blocks under cyclic pavement foundation loading", Geosynth. Int., 26(1), 1-25. https://doi.org/10.1680/jgein.18.00033.
  36. Gong, Y., He, Y., Han, C., Shen, Y. and Tan, G. (2019), "Stability analysis of soil embankment slope reinforced with polypropylene fiber under freeze-thaw cycles", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2019/5725708.
  37. Gullu, H. and Fedakar, H.I. (2017), "Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber", Geomech. Eng., 13(1), 25-41. http://dx.doi.org/10.12989/gae.2017.13.1.02.
  38. Hamidi, A. and Hooresfand, M. (2013), "Effect of fiber reinforcement on triaxial shear behavior of cement treated sand", Geotext. Geomembranes, 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005.
  39. Heineck, K.S., Coop, M.R. and Consoli, N.C. (2005), "Effect of microreinforcement of soils from very small to large shear strains", J. Geotech. Geoenviron. Eng., 131(8), 1024-1033. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1024).
  40. Horvath, J.S. (1994), "Expanded polystyrene (EPS) geofoam: An introduction to material behavior", Geotext. Geomembranes, 13(4), 263-280. https://doi.org/10.1016/0266-1144(94)90048-5.
  41. Huang, X. and Negussey, D. (2011), "EPS geofoam design parameters for pavement structures", Proceedings of the Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, Texas, U.S.A., March.
  42. Ikizler, S.B., Aytekin, M. and Nas, E. (2008), "Laboratory study of expanded polystyrene (EPS) geofoam used with expansive soils", Geotext. Geomembranes, 26(2), 189-195. https://doi.org/10.1016/j.geotexmem.2007.05.005.
  43. Johari, A. and Kalantari, A.R. (2016), "Probabilistic analysis of slope stability of embankment reinforced with discrete fiber", Proceeding of the 5th International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, Iran, November.
  44. Jutkofsky, W.S., Teh Sung, J. and Negussey, D. (2000), "Stabilization of embankment slope with geofoam", Transport. Res. Rec., 1736(1), 94-102. https://doi.org/10.3141/1736-12.
  45. Kaur, A. and Kumar, A. (2016), "Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil", Geomech. Eng., 10(2), 155-174. http://doi.org/10.12989/gae.2016.10.2.155.
  46. Khalaj, O., Siabil, S.M., Azizian, M., Tafreshi, S.N., Masek, B., Kepka, M., Kavalir, T., Krizek, M. and Jirkova, H. (2020), "Experimental and numerical investigation of expanded polystyrene (EPS) geofoam samples under monotonic loading", Geomech. Eng., 22(6), 475-88. http://doi.org/10.12989/gae.2020.22.6.475.
  47. Khan, M.I. and Meguid, M.A. (2018), "Experimental investigation of the shear behavior of EPS geofoam", Int. J. Geosynth. Ground Eng., 4(2), 12. https://doi.org/10.1007/s40891-018-0129-7.
  48. Kim, H., Witthoeft, A.F. and Kim, D. (2018), "Numerical study of earth pressure reduction on rigid walls using EPS geofoam inclusions", Geosynth. Int., 25(2), 180-199. https://doi.org/10.1680/jgein.18.00001.
  49. Kong, Y., Zhou, A., Shen, F. and Yao, Y. (2019), "Stress-dilatancy relationship for fiber-reinforced sand and its modeling", Acta Geotechnica, 14(6), 1871-1881. https://doi.org/10.1007/s11440-019-00834-6.
  50. Krishnaswamy, N.R. and Isaac, N.T. (1994), "Liquefaction potential of reinforced sand", Geotext. Geomembranes, 13(1), 23-41. https://doi.org/10.1016/0266-1144(94)90055-8.
  51. Leo, C.J., Kumruzzaman, M., Wong, H. and Yin, J.H. (2008), "Behavior of EPS geofoam in true triaxial compression tests" Geotext. Geomembranes, 26(5), 175-180. https://doi.org/doi:10.1016/j.geotexmem.2007.10.005.
  52. Li, H., Senetakis, K. and Coop, M.R. (2019), "Medium-strain dynamic behavior of fiber-reinforced sand subjected to stress anisotropy", Soil Dyn. Earthq. Eng., 126, 105764. https://doi.org/10.1016/j.soildyn.2019.105764.
  53. Lin, S., Lei, X., Meng, Q. and Xu, J. (2019), "Properties of biocemented, basalt-fibre-reinforced calcareous sand" Proc. Inst. Civ. Eng. Ground Improv., 1-9. https://doi.org/10.1680/jgrim.19.00023.
  54. Liu, J., Wang, Y., Kanungo, D.P., Wei, J., Bai, Y., Li, D., Song, Z. and Lu, Y. (2019), "Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer", Fiber. Polym., 20(3), 620-632. https://doi.org/10.1007/s12221-019-8779-1.
  55. Maher, M.H. and Gray, D.H. (1990), "Static response of sands reinforced with randomly distributed fibers", J. Geotech. Eng., 116(11), 1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
  56. Maher, M.H. and Ho, Y.C. (1994), "Mechanical properties of kaolinite/fiber soil composite", J. Geotech. Eng., 120(8), 1381-1393. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1381).
  57. Maheshwari, B.K., Singh, H.P. and Saran, S. (2012), "Effects of reinforcement on liquefaction resistance of Solani sand", J. Geotech. Geoenviron. Eng., 138(7), 831-840. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000645.
  58. Meguid, M.A., Hussein, M.G., Ahmed, M.R., Omeman, Z. and Whalen, J. (2017), "Investigation of soil-geosynthetic-structure interaction associated with induced trench installation", Geotext. Geomembranes, 45(4), 320-330. https://doi.org/10.1016/j.geotexmem.2017.04.004.
  59. Michalowski, R.L. and Cermak, J. (2003), "Triaxial compression of sand reinforced with fibers", J. Geotech. Geoenviron. Eng., 129(2), 125-136. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125).
  60. Negussey, D. (2007), "Design parameters for EPS geofoam", Soils Found., 47(1), 161-170. https://doi.org/10.3208/sandf.47.161.
  61. Negussey, D., Anasthas, N. and Srirajan, S. (2001), "Interface friction properties of EPS geofoam", Proceedings of the EPS Geofoam, 3rd International Conference, Salt Lake City, Utah, U.S.A., December.
  62. Negussey, D. and Srirajan, S. (2001), "Slope stabilization using EPS geofoam", Proceedings of the EPS Geofoam 3rd International Conference. Salt Lake City, Utah, U.S.A., December.
  63. Newman, M.P., Bartlett, S.F. and Lawton, E.C. (2010), "Numerical modeling of geofoam embankments", J. Geotech. Geoenviron. Eng., 136(2), 290-298. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000203.
  64. Ojima, K., Okazawa, Y., Matunawa, I., Kitada, I., Tutiya, M., Yamaji, H. and Kojima, K. (1996), "Use of EPS in the foundations of an emergency staircase of an overpass", Proceedings of the International Symposium on EPS Construction Method, Tokyo, Japan, October.
  65. Ossa, A. and Romo, M.P. (2009), "Micro-and macro-mechanical study of compressive behavior of expanded polystyrene geofoam", Geosynth., Int., 16(5), 327-338. https://doi.org/10.1680/gein.2009.16.5.327.
  66. Ozer, A.T. and Akay, O. (2016), "Interface shear strength characteristics of interlocked EPS-block geofoam", J. Mater. Civ. Eng., 28(4), 04015156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001418.
  67. Padade, A.H. and Mandal, J.N. (2012a), "Behavior of expanded polystyrene (EPS) geofoam under triaxial loading conditions", Elect. J. Geotech. Eng., 17, 2542-2553.
  68. Padade, A.H. and Mandal, J.N. (2012b), "Direct shear test on expanded polystyrene (EPS) geofoam", Proceedings of the 5th European Geosynthetic Congress, Valencia, Spain, September.
  69. Padade, A.H. and Mandal, J.N. (2014), "Interface strength behavior of expanded polystyrene EPS geofoam", Int. J. Geotech. Eng., 8(1), 66-71. https://doi.org/10.1179/1938636213Z.00000000056.
  70. Park, T. and Tan, S.A. (2005), "Enhanced performance of reinforced soil walls by the inclusion of short fiber", Geotext. Geomembranes, 23(4), 348-361. https://doi.org/10.1016/j.geotexmem.2004.12.002.
  71. Ple, O. and Le, T.N.H. (2012), "Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay", Geotext. Geomembranes, 32, 111-116. https://doi.org/10.1016/j.geotexmem.2011.11.004.
  72. Puppala, A.J., Ruttanaporamakul, P. and Congress, S.S.C. (2019), "Design and construction of lightweight EPS geofoam embedded geomaterial embankment system for control of settlements", Geotext. Geomembranes, 47(3), 295-305. https://doi.org/10.1016/j.geotexmem.2019.01.015.
  73. Ruttanaporamakul, P., Puppala, A.J., Pedarla, A., Bheemasetti, T.V. and Williammee, R.S. (2016), "Settlement mitigation of a distressed embankment in Texas by utilization of lightweight EPS geofoam material", Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, D.C., U.S.A., January.
  74. Sheeley, M. and Negussey, D. (2000), "An investigation of geofoam interface strength behavior", Proceedings of the Soft Ground Technology Conference, Noordwijkerhout, The Netherlands, May.
  75. Sonmezer, Y.B. (2019), "Investigation of the liquefaction potential of fiber-reinforced sand", Geomech. Eng., 18(5), 503-513. http://doi.org/10.12989/gae.2019.18.5.503.
  76. Sridhar, R. and Prathap Kumar, M.T. (2018), "Experimental investigation of load settlement behavior of coir mat and coir fiber reinforced sand", J. Nat. Fibers, 15(3), 452-463. https://doi.org/10.1080/15440478.2017.1349017.
  77. Srivastava, D.K., Srivastava, A., Misra, A.K. and Sahu, V. (2019), "Sustainability assessment of EPS-geofoam in road construction: A case study", Int. J. Sustain. Eng., 12(5), 341-348. https://doi.org/10.1080/19397038.2018.1508319.
  78. Stark, T.D. and Mann, G. (2006), "Landslide stabilization using geofoam", Proceedings of 8th International Conference on Geosynthetics, Yokohama, Japan, September.
  79. Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
  80. Vaslestad, J., Bartlett, S.F., Aaboe, R., Burkart, H., Ahmed, T. and Arellano, D. (2019), "Bridge foundations supported by EPS geofoam embankments on soft soil", Proceedings of the 5th International Conference on Geofoam Blocks in Construction Applications, Kyrenia, Cyprus, May.
  81. Wan, L.L., Zou, W.L., Wang, X.Q. and Han, Z. (2018), "Comparison of three inclusions in reducing lateral swelling pressure of expansive soils", Geosynth. Int., 25(5), 481-493. https://doi.org/10.1680/jgein.18.00012.
  82. Xenaki, V.C. (2001), "Sand-EPS interface behavior: A conceptual framework and experimental results", Proceedings of the 3rd Internatioanl Conference on EPS Geofoam, Salt Lake City, Utah, U.S.A., December.
  83. Ye, B., Cheng, Z.R., Liu, C., Zhang, Y.D. and Lu, P, (2017), "Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres", Geosynth. Int., 24(6), 625-636. https://doi.org/10.1680/jgein.17.00029.
  84. Yetimoglu, T. and Salbas, O. (2003), "A study on shear strength of sands reinforced with randomly distributed discrete fibers", Geotext. Geomembranes, 21, 103-110. https://doi.org/10.1016/S0266-1144(03)00003-7.
  85. Zarnani, S. and Bathurst, R.J. (2009), "Influence of constitutive model on numerical simulation of EPS seismic buffer shaking table tests", Geotext. Geomembranes, 27(4), 308-312. https://doi.org/10.1016/j.geotexmem.2008.11.008.
  86. Zarnani, S., Bathurst, R.J. and Gaskin, A. (2005), "Experimental investigation of geofoam seismic buffer using a shaking table", Proceedings of the North American Geosynthetics Society (NAGS)/GRI19 conference, Las Vegas, U.S.A., December.
  87. Zhang, X. and Russell, A.R. (2020), "Assessing liquefaction resistance of fiber-reinforced sand using a new pore pressure ratio", J. Geotech. Geoenviron. Eng., 146(1), 04019125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002197.