DOI QR코드

DOI QR Code

Machine learning based radar imaging algorithm for drone detection and classification

드론 탐지 및 분류를 위한 레이다 영상 기계학습 활용

  • Moon, Min-Jung (Department of Electronic Engineering, Korea Aerospace University) ;
  • Lee, Woo-Kyung (Department of Electronic Engineering, Korea Aerospace University)
  • Received : 2021.01.06
  • Accepted : 2021.04.17
  • Published : 2021.05.31

Abstract

Recent advance in low cost and light-weight drones has extended their application areas in both military and private sectors. Accordingly surveillance program against unfriendly drones has become an important issue. Drone detection and classification technique has long been emphasized in order to prevent attacks or accidents by commercial drones in urban areas. Most commercial drones have small sizes and low reflection and hence typical sensors that use acoustic, infrared, or radar signals exhibit limited performances. Recently, artificial intelligence algorithm has been actively exploited to enhance radar image identification performance. In this paper, we adopt machined learning algorithm for high resolution radar imaging in drone detection and classification applications. For this purpose, simulation is carried out against commercial drone models and compared with experimental data obtained through high resolution radar field test.

최근 드론은 가격 하락, 소형화와 함께 높은 기술 발전에 힘입어 드론 보급이 민군에 걸쳐 증가하면서 보안안전사고, 치안·안보 위협 등의 문제를 유발할 가능성도 커지고 있다. 드론으로 인해 발생하는 사건 및 사고를 예방하기 위해서는 드론의 출현에 대응할 수 있는 탐지 기술이 우선적으로 선행되어야 한다. 드론은 크기가 작고 전파 반사도가 낮은 재질로 구성되어 있어 음향, 적외선, 레이다의 운용만으로는 탐지가 어렵다. 최근 영상 식별 성능을 강화하기 위해 레이다 신호에 인공지능을 접목한 연구사례가 증가하는 추세이다. 본 논문에서는 레이다 영상을 이용한 드론 탐지 기술을 소개하며, 드론의 모의실험 데이터와 실제 실험 데이터를 기반으로 인공지능 기술에 적용하여 드론의 분류 정확도를 효과적으로 입증하였다.

Keywords

Acknowledgement

This work has been supported by Civil-Military Technology Coopertaion Program in South Korea.

References

  1. S. Rahman and D. A. Robertson, "Radar micro-Doppler signatures of drones and birds at K-band and W-band," Scientific Reports, vol. 8, no. 1, pp. 1-11, 2018.
  2. S. Bjorklund, "Target detection and classification of small drones by boosting on radar micro-doppler," 2018 15th European Radar Conference (EuRAD), IEEE, pp. 182-185, 2018.
  3. F. Hoffmann, M. Ritchie, and F. Fioranelli, "Micro-Doppler based detection and tracking of UAVs with multistatic radar," 2016 IEEE Radar Conference (RadarConf), IEEE, pp. 1-6, 2016.
  4. B. Taha and A. Shoufan, "Machine learning-based drone detection and classification: State-of-the-art in research," IEEE Access, vol. 7, pp. 138669-138682, 2019. https://doi.org/10.1109/ACCESS.2019.2942944
  5. P. Klaer, A. Huang, P. Sevigny, S. Rajan., S. Pant, P. Patnaik, and B. Balaji, "An Investigation of Rotary Drone HERM Line Spectrum under Manoeuvering Conditions," Sensors2020, vol. 20, no. 20, pp. 5940, 2020. https://doi.org/10.3390/s20205940
  6. M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, and I. Guvenc, "Micro-UAV detection and classification from RF fingerprints using machine learning techniques," 2019 IEEE Aerospace Conference, IEEE, pp. 1-13, 2019.
  7. S. Rahman and D. A. Robertson, "Multiple drone classification using millimeter-wave CW radar micro-Doppler data," Radar Sensor Technology XXIV., International Society for Optics and Photonics, vol. 11408, pp. 1140809, 2020.
  8. H. Kang, B. K. Kim, J. S. Park, J. S. Suh, and S. O. Park, "Drone Elevation Angle Classification Based on Convolutional Neural Network With Micro-Doppler of Multipolarization," IEEE Geoscience and Remote Sensing Letters, 2020.
  9. D. A. Brooks, O. Schwander, F. Barbaresco, J. Y. Schneider, and M. Cord "Temporal deep learning for drone microDoppler classification," 2018 19th International Radar Symposium (IRS), pp. 1-10, 2018.
  10. S. Rahman and D. A. Robertson "Classification of drones and birds using convolutional neural networks applied to radar micro-Doppler spectrogram images," IET Radar, Sonar & Navigation, vol. 14, no. 5, pp. 653-661, 2019.
  11. K. M. Song, M. J. Moon, and W. K. Lee, "Experimental Study of Drone Detection and Classification through FMCW ISAR and CW Micro-Doppler Analysis," Korea institute of millitary science and technology, vol. 21, no. 2, pp. 147-157, 2018.
  12. P. M. Radiuk, "Impact of training set batch size on the performance of convolutional neural networks for diverse datasets," Information Technology and Management Science, vol. 21, no. 1, pp. 20-24, 2017.