DOI QR코드

DOI QR Code

Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans

  • Son, Sung-Hun (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Jang, Seo-Yeong (Department of Integrative Biology, Kyungpook National University) ;
  • Park, Hee-Soo (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2021.01.08
  • Accepted : 2021.03.10
  • Published : 2021.05.28

Abstract

RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.

Keywords

Acknowledgement

This work was supported by a grant awarded to HSP by the National Research Foundation of Korea (NRF) and funded by the Korean government (NRF-2020R1C1C1004473).

References

  1. McCluskey K, Baker SE. 2017. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology 8: 67-83. https://doi.org/10.1080/21501203.2017.1281849
  2. Etxebeste O, Espeso EA. 2019. Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int. Microbiol. 23: 5-22. https://doi.org/10.1007/s10123-019-00064-6
  3. Casselton L, Zolan M. 2002. The art and design of genetic screens: filamentous fungi. Nat. Rev. Genet. 3: 683-697. https://doi.org/10.1038/nrg889
  4. Yu JH. 2010. Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology 38: 229-237. https://doi.org/10.4489/MYCO.2010.38.4.229
  5. Park H-S, Yu J-H. 2012. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15: 669-677. https://doi.org/10.1016/j.mib.2012.09.006
  6. Adams TH, Wieser JK, Yu J-H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62: 35-54. https://doi.org/10.1128/MMBR.62.1.35-54.1998
  7. Dyer PS, O'Gorman CM. 2012. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol. Rev. 36: 165-192. https://doi.org/10.1111/j.1574-6976.2011.00308.x
  8. Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Muller WH, Dijksterhuis J, et al. 2013. Development in Aspergillus. Stud. Mycol. 74: 1-29. https://doi.org/10.3114/sim0006
  9. Ruger-Herreros C, Rodriguez-Romero J, Fernandez-Barranco R, Olmedo M, Fischer R, Corrochano LM, et al. 2011. Regulation of conidiation by light in Aspergillus nidulans. Genetics 188: 809-822. https://doi.org/10.1534/genetics.111.130096
  10. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. 2017. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 18: 28. https://doi.org/10.1186/s13059-017-1151-0
  11. Ojeda-Lopez M, Chen W, Eagle CE, Gutierrez G, Jia WL, Swilaiman SS, et al. 2018. Evolution of asexual and sexual reproduction in the aspergilli. Stud. Mycol. 91: 37-59. https://doi.org/10.1016/j.simyco.2018.10.002
  12. Park H-S, Lee M-K, Han K-H, Kim M-J, Yu J-H. 2019. Developmental Decisions in Aspergillus nidulans, pp. 63-80. In Hoffmeister D, Gressler M (eds.), Biology of the Fungal Cell, 3rd Ed.,
  13. Adams TH, Boylan MT, Timberlake WE. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54: 353-362. https://doi.org/10.1016/0092-8674(88)90198-5
  14. Park H-S, Ni M, Jeong KC, Kim YH, Yu J-H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7: e45935. https://doi.org/10.1371/journal.pone.0045935
  15. Wu MY, Mead ME, Lee MK, Ostrem Loss EM, Kim SC, Rokas A, et al. 2018. Systematic dissection of the evolutionarily conserved WetA developmental regulator across a genus of filamentous fungi. mBio. 9: e01130.
  16. Wu MY, Mead ME, Lee MK, Neuhaus GF, Adpressa DA, Martien JI, et al. 2021. Transcriptomic, Protein-DNA interaction, and metabolomic studies of VosA, VelB, and WetA in Aspergillus nidulans asexual spores. mBio 12: e03128-20.
  17. Park HS, Yu JH. 2017. Velvet regulators in Aspergillus spp. Microbiol. Biotechnol. Lett. 44: 409-419. https://doi.org/10.4014/mbl.1607.07007
  18. Drott MT, Bastos RW, Rokas A, Ries LNA, Gabaldon T, Goldman GH, et al. 2020. Diversity of secondary metabolism in Aspergillus nidulans clinical isolates. mSphere 5: e00156-20.
  19. Perrone G, Gallo A. 2017. Aspergillus Species and their associated mycotoxins. Methods Mol. Biol. 1542: 33-49. https://doi.org/10.1007/978-1-4939-6707-0_3
  20. Pfliegler WP, Pocsi I, Gyori Z, Pusztahelyi T. 2019. The Aspergilli and their mycotoxins: Metabolic interactions with plants and the soil biota. Front. Microbiol. 10: 2921. https://doi.org/10.3389/fmicb.2019.02921
  21. Diaz Nieto CH, Granero AM, Zon MA, Fernandez H. 2018. Sterigmatocystin: A mycotoxin to be seriously considered. Food Chem. Toxicol. 118: 460-470. https://doi.org/10.1016/j.fct.2018.05.057
  22. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, et al. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 93: 1418-1422. https://doi.org/10.1073/pnas.93.4.1418
  23. Yu JH, Butchko RA, Fernandes M, Keller NP, Leonard TJ, Adams TH. 1996. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr. Genet. 29: 549-555. https://doi.org/10.1007/BF02426959
  24. Fernandes M, Keller NP, Adams TH. 1998. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Mol. Microbiol. 28: 1355-1365. https://doi.org/10.1046/j.1365-2958.1998.00907.x
  25. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320: 1504-1506. https://doi.org/10.1126/science.1155888
  26. Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM. 2013. The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 8: e74122. https://doi.org/10.1371/journal.pone.0074122
  27. Oakley CE, Ahuja M, Sun WW, Entwistle R, Akashi T, Yaegashi J, et al. 2017. Discovery of McrA, a master regulator of Aspergillus secondary metabolism. Mol. Microbiol. 103: 347-365. https://doi.org/10.1111/mmi.13562
  28. Lee MK, Son YE, Park HS, Alshannaq A, Han KH, Yu JH. 2020. Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans. Sci. Rep. 10: 15075. https://doi.org/10.1038/s41598-020-72224-y
  29. Lunde BM, Moore C, Varani G. 2007. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8: 479-490. https://doi.org/10.1038/nrm2178
  30. Oliveira C, Faoro H, Alves LR, Goldenberg S. 2017. RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Genet. Mol. Biol. 40: 22-30. https://doi.org/10.1590/1678-4685-gmb-2016-0258
  31. Hentze MW, Castello A, Schwarzl T, Preiss T. 2018. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19: 327-341. https://doi.org/10.1038/nrm.2017.130
  32. Kishore S, Luber S, Zavolan M. 2010. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief Funct. Genomics 9: 391-404. https://doi.org/10.1093/bfgp/elq028
  33. Vollmeister E, Feldbrugge M. 2010. Posttranscriptional control of growth and development in Ustilago maydis. Curr. Opin. Microbiol. 13: 693-699. https://doi.org/10.1016/j.mib.2010.08.013
  34. Quenault T, Lithgow T, Traven A. 2011. PUF proteins: repression, activation and mRNA localization. Trends Cell Biol. 21: 104-112. https://doi.org/10.1016/j.tcb.2010.09.013
  35. Wang M, Oge L, Perez-Garcia MD, Hamama L, Sakr S. 2018. The PUF Protein Family: Overview on PUF RNA Targets, Biological Functions, and Post Transcriptional Regulation. Int. J. Mol. Sci. 19: 410. https://doi.org/10.3390/ijms19020410
  36. Wilinski D, Buter N, Klocko AD, Lapointe CP, Selker EU, Gasch AP, et al. 2017. Recurrent rewiring and emergence of RNA regulatory networks. Proc. Natl. Acad. Sci. USA 114: E2816-E2825. https://doi.org/10.1073/pnas.1617777114
  37. Wilinski D, Qiu C, Lapointe CP, Nevil M, Campbell ZT, Tanaka Hall TM, et al. 2015. RNA regulatory networks diversified through curvature of the PUF protein scaffold. Nat. Commun. 6: 8213. https://doi.org/10.1038/ncomms9213
  38. Porter DF, Koh YY, VanVeller B, Raines RT, Wickens M. 2015. Target selection by natural and redesigned PUF proteins. Proc. Natl. Acad. Sci. USA 112: 15868-15873. https://doi.org/10.1073/pnas.1508501112
  39. Gerber AP, Herschlag D, Brown PO. 2004. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2: E79. https://doi.org/10.1371/journal.pbio.0020079
  40. Haramati O, Brodov A, Yelin I, Atir-Lande A, Samra N, Arava Y. 2017. Identification and characterization of roles for Puf1 and Puf2 proteins in the yeast response to high calcium. Sci. Rep. 7: 3037. https://doi.org/10.1038/s41598-017-02873-z
  41. Gu W, Deng Y, Zenklusen D, Singer RH. 2004. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev. 18: 1452-1465. https://doi.org/10.1101/gad.1189004
  42. Marhoul JF, Adams TH. 1996. Aspergillus fabM encodes an essential product that is related to poly(A)-binding proteins and activates development when overexpressed. Genetics 144: 1463-1470. https://doi.org/10.1093/genetics/144.4.1463
  43. Shaw BD, Upadhyay S. 2005. Aspergillus nidulans swoK encodes an RNA binding protein that is important for cell polarity. Fungal Genet. Biol. 42: 862-872. https://doi.org/10.1016/j.fgb.2005.06.002
  44. Olszewska A, Krol K, Weglenski P, Dzikowska A. 2007. Arginine catabolism in Aspergillus nidulans is regulated by the rrmA gene coding for the RNA-binding protein. Fungal Genet. Biol. 44: 1285-1297. https://doi.org/10.1016/j.fgb.2007.07.001
  45. Krol K, Morozov IY, Jones MG, Wyszomirski T, Weglenski P, Dzikowska A, et al. 2013. RrmA regulates the stability of specific transcripts in response to both nitrogen source and oxidative stress. Mol. Microbiol. 89: 975-988. https://doi.org/10.1111/mmi.12324
  46. Soukup AA, Fischer GJ, Luo J, Keller NP. 2017. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genet. Biol. 100: 13-21. https://doi.org/10.1016/j.fgb.2017.01.004
  47. Park HS, Yu JH. 2012. Multi-copy genetic screen in Aspergillus nidulans. Methods Mol. Biol. 944: 183-190. https://doi.org/10.1007/978-1-62703-122-6_13
  48. Park HS, Nam TY, Han KH, Kim SC, Yu JH. 2014. VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9: e89883. https://doi.org/10.1371/journal.pone.0089883
  49. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  50. Kim MJ, Jung WH, Son YE, Yu JH, Lee MK, Park HS. 2019. The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J. Microbiol. 57: 893-899. https://doi.org/10.1007/s12275-019-9214-4
  51. Park HS, Lee MK, Kim SC, Yu JH. 2017. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS One 12: e0177099. https://doi.org/10.1371/journal.pone.0177099
  52. Ni M, Yu J-H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2: e970. https://doi.org/10.1371/journal.pone.0000970
  53. Sarikaya Bayram O, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, et al. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6: e1001226. https://doi.org/10.1371/journal.pgen.1001226
  54. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, et al. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 1105-1115. https://doi.org/10.1038/nature04341
  55. Shaaban MI, Bok JW, Lauer C, Keller NP. 2010. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot. Cell 9: 1816-1824. https://doi.org/10.1128/EC.00189-10
  56. Kwon NJ, Shin KS, Yu JH. 2010. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet. Biol. 47: 981-993. https://doi.org/10.1016/j.fgb.2010.08.009